Spelling suggestions: "subject:"artificial neural"" "subject:"aartificial neural""
411 |
Reconhecimento de padrões lexicais por meio de redes neuraisBabini, Maurizio [UNESP] 21 December 2006 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:22:35Z (GMT). No. of bitstreams: 0
Previous issue date: 2006-12-21Bitstream added on 2014-06-13T19:48:56Z : No. of bitstreams: 1
babini_m_me_ilha_prot.pdf: 976475 bytes, checksum: 371792f3e205462129827cc925906822 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A compreensão da linguagem humana é uma das tarefas mais difíceis do Processamento da Linguagem Natural (PLN) e de modo mais geral da Automação e da Inteligência Artificial (IA). O objetivo desta pesquisa é estudar os mecanismos que permitem utilizar uma rede neural artificial para poder interpretar textos. Este trabalho deveria ser utilizado, futuramente, para criar uma interface em um ambiente de co-projeto, capaz de agrupar/classificar termos/conceitos, reconhecendo padrões textuais. Para alcançar nossos objetivos de pesquisa em nível de Mestrado, utilizamos o modelo semântico de Bernard Pottier, e uma Rede Neural Artificial de Kohonen. A escolha do modelo de Bernard Pottier deve-se ao fato de que este autor é um dos mais conceituados lingüistas da atualidade e que seu modelo é largamente utilizado por pesquisadores de vários paises, tendo sido, assim, comprovada a sua validade. No que diz respeito à rede de Kohonen, acreditamos que seja a mais indicada para este tipo de aplicação, tendo em vista o fato de que essa rede tenta imitar o funcionamento do cérebro humano, em particular, reproduzindo o mapeamento de suas áreas especializadas, e tendo como hipótese de partida que, no córtex humano, conceitos similares ou de áreas afins distribuem-se em áreas limítrofes. A escolha desse tipo de rede para o nosso trabalho deve-se, outrossim, ao fato de que ela utiliza um tipo de treinamento competitivo e não-supervisionado que permite organizar os vetores (dados) de entrada em agrupamentos (clusters). / The understanding of human language is one of the most difficult tasks of Natural Language Processing (NLP), and, in general, of Automation and Artificial Intelligence (AI). The aim of our research is to study the mechanisms that allow using an artificial neural network for interpreting text. Later, our work should be used to create an interface, in a hardware/software co-design environment, capable of clustering/classifying terms/concepts, and recognizing text patterns. In order to achieve the objectives of our research, we used the semantic model of Bernard Pottier, and a Kohonen Artificial Neural Network. The choice of Bernard Pottier's model was motivated by the fact that the author is one of the most eminent linguists nowadays, and his model is largely used by researchers in many countries, thus proving the validity of his proposal. About the Kohonen net, we believe that it is the most appropriate net for this kind of application, due to the fact that this net tries to imitate the functioning of the human brain, particularly reproducing the map of its specialized areas, as well as due to the fact that this net has as initial hypothesis that, in the human cortex, similar concepts or concepts of similar areas are distributed in closed areas. Another reason for the choice of this kind of net in our study is that it uses a competitive and non-supervising training, that allows organizing entry vectors (data) in clusters.
|
412 |
Estudo da predição da circularidade e rugosidade de peças retificadas utilizando as redes neurais artificiaisFrança, Thiago Valle [UNESP] 19 January 2005 (has links) (PDF)
Made available in DSpace on 2014-06-11T19:24:47Z (GMT). No. of bitstreams: 0
Previous issue date: 2005-01-19Bitstream added on 2014-06-13T18:21:15Z : No. of bitstreams: 1
franca_tv_me_bauru.pdf: 6693171 bytes, checksum: a1e62f81ea86d1eeed97e598cb2bb8f5 (MD5) / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / Fundação de Amparo à Pesquisa do Estado de São Paulo (FAPESP) / Atualmente, a fabricação é caracterizada pela sua complexidade, pluralidade de disciplinas e crescente demanda de novas ferramentas e técnicas para a solução de difíceis problemas. As redes neurais artificiais oferecem uma nova e diferente alternativa para investigar e analisar os desafiadores tópicos relacionados à manufatura. Desta forma, estudou-se neste trabalho os assuntos relacionados à aplicação das redes neurais na predição da circularidade e rugosidade da peça retificada pela análise de algumas variáveis de saída do processo. Foram empregados nos ensaios de usinagem: um fluido de corte (óleo emulsionável), um rebolo superabrasivo de CBN com ligante vitrificado e peças temperadas e revenidas de aço VC-131. Este trabalho também utilizou outras tecnologias de otimização do processo de retificação, tais como: a utilização de defletores aerodinâmicos para a quebra da camada de ar e a refrigeração otimizada por meio de um jato de fluido direcionado. Os ensaios de usinagem foram realizados para gerar a base de dados utilizada nos testes das redes neurais (ensaios computacionais). Fez-se portanto, diversos experimentos variando-se a velocidade de avanço, ou mergulho do rebolo na peça. As variáveis de saída analisadas que serviram de dados de entrada para a RNA foram: a força tangencial de corte (Ft), a energia específica de retificação (u), o desgaste diametral do rebolo, o parâmetro DPO e a emissão acústica (EA). A rugosidade e circularidade foram utilizadas para o treinamento das RNA s. Nos testes computacionais, foram analisadas duas bases de dados: a primeira referente às médias de todos os 40 ciclos de retificação, já a segunda utilizou todos os valores destes 40 ciclos. Ainda foram examinadas diferentes combinações de dados de entrada para verificar a influência do parâmetro DPO na predição. Os resultados... / Nowadays, the manufacturing is characterized by its complexity, plurality of subjects and increasing demand of new tools and techniques for the solution of difficult problems. Artificial neural nets propose a new and different alternative to investigate and analyze the challenging topics related to the manufacturing. The objective of this work is to study the use of artificial neural nets in the prediction of roundness and roughness of a ground workpiece. It was used a CBN wheel, emulsion oil and workpieces made of VC-131 steel. This work also used other technologies of grinding optimization, such as: the use of a coolant shoe to break the air curtain layer in addition and the high pressure fluid jet. Grinding tests had been carried through to generate the database used in the artificial neural nets (computational tests). Different feed rates were used in these experiments to generate outputs such as: tangential cutting force (Ft), specific energy of grinding (u), diametrical wear of the wheel, DPO parameter and acoustic emission (EA). The roughness and roundness were used to train the RNA's. In the computational tests, it was verify the influence of the DPO parameter in the prediction as well as two different databases. The results suggest that this parameter (DPO) was not able to substitute the tangential cutting force (Ft) and the acoustic emission (EA) in the prediction. Moreover, it was verify the need of an input that represents the dynamic stiffness of the machine-tool-workpiece system to improve the roundness prediction.
|
413 |
Monitoramento e classificação de falhas em estruturas utilizando redes neurais artificiais / Monitoring and classification of faults in structures using artificial neural networksChaves, Jacqueline Santos [UNESP] 29 July 2016 (has links)
Submitted by JACQUELINE SANTOS CHAVES null (jac_sc@yahoo.com) on 2016-08-19T20:04:09Z
No. of bitstreams: 1
Jacqueline S. Chaves.pdf: 1795331 bytes, checksum: 9c7a177018aa3a98f7cb4a90da94c904 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-08-23T19:46:42Z (GMT) No. of bitstreams: 1
chaves_js_me_ilha.pdf: 1795331 bytes, checksum: 9c7a177018aa3a98f7cb4a90da94c904 (MD5) / Made available in DSpace on 2016-08-23T19:46:42Z (GMT). No. of bitstreams: 1
chaves_js_me_ilha.pdf: 1795331 bytes, checksum: 9c7a177018aa3a98f7cb4a90da94c904 (MD5)
Previous issue date: 2016-07-29 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / As técnicas para o monitoramento de falhas em estruturas têm se tornado cada vez mais importantes principalmente por seus benefícios quanto à maior segurança de vida e por auxiliarem as empresas responsáveis em construir edifícios, pontes e estruturas em geral a diminuírem seus custos com a manutenção das mesmas. Deste modo, a fim de desenvolver uma forma eficiente para a identificação e caracterização de falhas estruturais, esta dissertação tem por objetivo demonstrar uma aplicação de Redes Neurais Artificiais (RNAs) como uma técnica de monitoramento da integridade estrutural (SHM) para tal problema. Através de um modelo matemático de equações diferenciais ordinárias para a representação de uma estrutura predial, será desenvolvida uma RNA ARTMAP Fuzzy por ser uma rede flexível e estável em relação à sua habilidade em se adaptar às mudanças imprevistas do ambiente externo, para identificar tais falhas. / The techniques for failures monitoring in mechanical engineering structures have become increasingly important especially for its benefits as the largest life-security and assist the responsible companies for build buildings, bridges and structures in general to lower their costs to maintenance of them. Thus, in order to develop an efficient way for the identification and characterization of structural failures, this work aims to demonstrate an application of Artificial Neural Networks (ANN) as a monitoring technique of structural health monitoring (SHM) for this problem. Through a dynamic model for the representation of a building structure, Fuzzy ARTMAP ANN will be developed to be a flexible and stable network with respect to its ability to adapt to unexpected changes in the external environment to identify such failures.
|
414 |
Previsão da Variabilidade da Emissão de CO2 do Solo em Áreas de Cana-de-Açúcar Utilizando Redes Neurais Artificiais / Forecast Variability of Soil CO2 emission in Cane Sugar Areas Using Artificial Neural NetworksFreitas, Luciana Paro Scarin [UNESP] 05 September 2016 (has links)
Submitted by Luciana Paro Scarin Freitas null (melscarin@gmail.com) on 2016-09-15T19:43:12Z
No. of bitstreams: 1
Tese Final - Luciana Paro Scarin Freitas - 150916.pdf: 2268932 bytes, checksum: 6258cf968244fdbb360b56af8ef82a25 (MD5) / Approved for entry into archive by Juliano Benedito Ferreira (julianoferreira@reitoria.unesp.br) on 2016-09-15T19:48:07Z (GMT) No. of bitstreams: 1
freitas_lps_dr_ilha.pdf: 2268932 bytes, checksum: 6258cf968244fdbb360b56af8ef82a25 (MD5) / Made available in DSpace on 2016-09-15T19:48:07Z (GMT). No. of bitstreams: 1
freitas_lps_dr_ilha.pdf: 2268932 bytes, checksum: 6258cf968244fdbb360b56af8ef82a25 (MD5)
Previous issue date: 2016-09-05 / Conselho Nacional de Desenvolvimento Científico e Tecnológico (CNPq) / O dióxido de carbono (CO2) é considerado um dos principais gases do efeito estufa adicional e contribui significativamente para as mudanças climáticas globais. Áreas agrícolas oferecem uma oportunidade para mitigar esse efeito, uma vez que, dependendo de seu uso e manejo, são capazes de armazenar grandes quantidades de carbono, retirando-as da atmosfera. A produção de CO2 no solo é resultado de processos biológicos, como a decomposição da matéria orgânica e respiração de raízes e organismos do solo, fenômeno chamado de emissão de CO2 do solo (FCO2). O objetivo deste trabalho foi utilizar as redes neurais artificiais para estudo e previsão de padrões espaço-temporais da emissão de CO2 do solo em áreas de cana-de-açúcar em sistema de cana crua, colheita mecanizada, quando grandes quantidades de palhas são depositadas sobre a superfície do solo. Valores de FCO2 foram coletados em áreas de cultivo comercial no Sudeste do Estado de São Paulo, registrados por meio do sistema LI-8100, em gradeados amostrais para determinação da variabilidade espaçotemporal de FCO2, e atributos físicos e químicos do solo. Foram utilizados dados referentes a estudos realizados nos anos de 2008, 2010 e 2012, no período após a operação de colheita mecânica da cultura. Uma rede neural Perceptron Multi-Camadas via algoritmo backpropagation foi aplicada para estimar a emissão de FCO2 do ano de 2012, utilizando os dados referentes aos anos de 2008 e 2010 para treinamento da rede neural. A rede neural inicialmente apresentou um MAPE de 18,3852 coeficiente de determinação R2 de 0,9188. Os dados obtidos do FCO2 observado e do FCO2 estimado apresentam moderada dependência espacial, e pelos mapas do padrão espacial do fluxo de CO2 é observado que a rede neural apresentou considerável similaridade com os dados observados, identificando os pontos característicos de maior emissão como também os de menor emissão de CO2. Portanto, os resultados indicam que a rede neural artificial pode fornecer estimativas com confiabilidade para a avaliação de FCO2 a partir de dados de atributos físicos e químicos do solo, sendo capaz de caracterizar a variabilidade espaçotemporal desse atributo em áreas de cana-de-açúcar, sob o sistema de cana crua no Sudeste do Estado de São Paulo. / Carbon dioxide (CO2) is considered one of the main gases additional greenhouse effect and contributes significantly to global climate change. Agriculture areas offer an opportunity to mitigate this effect, since, depending on its use and handling, are capable of storing large amounts of carbon, removing them from the atmosphere. The CO2 production in soil is the result of biological processes such as the decomposition of organic matter and breathing roots and soil organisms, a phenomenon called soil CO2 emissions (FCO2). The aim of this study was to use artificial neural networks to study and forecast patterns spatiotemporal of soil CO2 emission in areas of sugarcane in raw cane system, mechanical harvesting, when large amounts of straw are deposited on soil surface. FCO2 values were collected in areas of commercial cultivation in southeastern of the state of São Paulo, registered through the LI-8100 system, sample grilles for determining the spatiotemporal variability of FCO2, and physical and chemical soil properties. The used data were from studies conducted in the years 2008, 2010 and 2012, in the period after the mechanical harvesting operation culture. A Multilayer Perceptron neural network with backpropagation algorithm was applied to estimate the emission of FCO2 in the year 2012, using data from the years 2008 and 2010 to the neural network training. The neural network initially presented a MAPE of 18.3852 and determination coefficient R2 of 0.9188. Data obtained from the observed FCO2 and FCO2 estimated present moderate spatial dependence, and observing the maps of the spatial pattern of the CO2 flow show that neural network presents considerable similarity to the observed data, identifying the higher and lower characteristic points of CO2 emissions. Therefore, the results indicate that the artificial neural network can provide reliability for the evaluation of FCO2 from data of physical and chemical soil properties, being able to describe the spatiotemporal variability of this attribute in sugarcane fields, under the crude cane system in the southeastern of the state of São Paulo. / CNPq: 152199/2012-8
|
415 |
Evapotranspiração de referência no estado de São Paulo: métodos empíricos, aprendizado de máquina e geoespacial / Reference evapotranspiration in the state of São Paulo: empirical methods, machines learning techniques and geospatial methodTangune, Bartolomeu Félix [UNESP] 08 May 2017 (has links)
Submitted by BARTOLOMEU FÉLIX TANGUNE null (tanguneb@gmail.com) on 2017-05-31T13:12:46Z
No. of bitstreams: 1
Bartolomeu Felix Tangune_tese.pdf: 3390592 bytes, checksum: 0daf84bae7e268e5ff6b06e039ea9043 (MD5) / Approved for entry into archive by Luiz Galeffi (luizgaleffi@gmail.com) on 2017-05-31T18:38:01Z (GMT) No. of bitstreams: 1
tangune_bf_dr_bot.pdf: 3390592 bytes, checksum: 0daf84bae7e268e5ff6b06e039ea9043 (MD5) / Made available in DSpace on 2017-05-31T18:38:01Z (GMT). No. of bitstreams: 1
tangune_bf_dr_bot.pdf: 3390592 bytes, checksum: 0daf84bae7e268e5ff6b06e039ea9043 (MD5)
Previous issue date: 2017-05-08 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior (CAPES) / A evapotranspiração de referência (ETo) é importante na agricultura para satisfazer as necessidades de água das culturas e para o manejo dos sistemas de irrigação. A ETo pode ser estimada com precisão a partir do método padrão de Penman Monteith FAO 56, porém, o seu uso é bastante complexo. Sendo assim, vários métodos empíricos de uso simples vem sendo desenvolvidos por diversos pesquisadores, todavia, a sua escolha deve ser feita de forma cuidadosa, pois apresentam um desempenho que varia em função das condições climáticas de cada local. A variabilidade do desempenho dos métodos empíricos tem levado os pesquisadores a procurarem outros métodos alternativos. Como resultado dessas pesquisas, há que destacar a técnica de aprendizado de máquinas (TAM): redes neurais artificiais (RNAs) e máquina vetor de suporte (MVS). Diante do exposto, o presente trabalho foi dividido em três capítulos, onde no primeiro capítulo foi avaliado o desempenho dos métodos empíricos de temperatura (Benevides e Lopez - BenL, Hamon -Ham, Blaney Criddle Original e Hargreaves Samani -HS) e de radiação solar (Abtew, Jensen Haise - JensH, Makkink e Irmak) na estimativa da ETo no estado de São Paulo. Todos os métodos foram avaliados em relação ao método padrão em escala anual e sazonal. Os resultados obtidos na escala anual mostraram que o método de Abtew apresentou o melhor desempenho. Na escala sazonal, observou-se que o método de JensH foi melhor no inverno, o de Irmak e de Abtew no verão e outono. O método de Abtew foi também melhor na primavera. No segundo capítulo, foi avaliado o desempenho dos métodos de HS, e de Abtew (melhores métodos empíricos em escala anual), RNAs e MVS. A RNA utilizada foi do tipo Multilayer Perceptron, com algoritmo de aprendizado Backpropagation e na MVS utilizou-se a função Radial Basic Function de Kernel, com algoritmo Regression Sequential Minimal Optimization. Os resultados obtidos na escala anual mostraram que a R6 (da RNA) e a M6 (da MVS) compostas por temperatura máxima (Tmax), mínima (Tmin), média do ar (T), radiação extraterrestre (Ra) e Rs produziram o melhor desempenho. Na escala sazonal, o melhores resultados foram observados nas arquiteturas R3 e M3, R4 e M4, R5 e M5, R6 e M6, compostas por: Tmax, Tmin, T, Ra e velocidade do vento; Tmax, Tmin, T, Ra e umidade relativa do ar; T e Rs, respectivamente. Tanto no capítulo 1 quanto no 2, as análises estatísticas foram feitas com base nos índices MBE (Mean Bias Error), RSME (Root Mean Square Error), “d” de Willmott e R2 (coeficiente de determinação). No terceiro capítulo, foi avaliada a técnica de interpolação por krigagem ordinária pontual (KOP), cujos variogramas obtidos foram avaliados com base na soma dos quadrados dos resíduos, em escala anual e sazonal. Todos os modelos variográficos obtidos apresentaram uma dependência espacial forte. A posterior, fez-se a validação cruzada da KOP com base nos coeficientes angular e linear da reta de regressão linear simples, MBE, RSME e MSDR (Mean squared deviation ratio ), cujos resultados mostraram um ótimo desempenho da KOP. / The reference evapotranspiration (ETo) is important in agriculture for crop water management and irrigation systems management. The ETo can be estimated accurately by the FAO 56 standard method of Penman Monteith, however, its use is complex. Thus, several empirical methods of simple use have been developed by many researchers, but their choice must be made carefully because they present a performance that change according to the climate conditions of each location. The variability of the performance of empirical methods has led researchers to look for alternative methods. As the result, we must highlight the machine learning technique (MLT), such as artificial neural networks (ANNs) and support vector machine (SVM). This work was divided into three chapters. In the first chapter, four temperature- based (Benevides e Lopez - BenL, Hamon -Ham, Blaney Criddle Original e Hargreaves Samani -HS) and four radiation- based (Abtew, Jensen Haise - JensH, Makkink and Irmak) ETo methods were tested against FAO 56 method, using annual and seasonal scale in the state of São Paulo. The results obtained in the annual scale showed that the Abtew method presented the best performance. On the seasonal scale, it was observed that the JensH method was better in the winter, the Irmak and Abtew methods were better in the summer and autumn. The Abtew method was also better in the spring. In the second chapter, HS and Abtew methods, ANNs and SVM were used. The ANN used was Multilayer Perceptron with Backpropagation learning algorithm, and in the SVM, was used Kernel Radial Basic Function with Regression Sequential Minimal Optimization learning algorithm. The obtained results in the annual scale showed that R6 for RNA and M6 for MVS composed of maximum temperature (Tmax), minimum temperature (Tmin), average air temperature (T), extraterrestrial radiation (Ra) and global solar radiation (Rs) had a better performance. On the seasonal scale, the better performance was observed in R3 e M3, R4 e M4, R5 e M5, R6 e M6 architectures, composed of Tmax, Tmin, T, Ra and wind speed; Tmax, Tmin, T, Ra and relative humidity); T and Rs; R6 and M6, respectively. All methods were analyzed using MBE (Mean Bias Error), RMSE (Root Mean Square Error), “d” of Wilmot (1985) and R2 (determination coefficient). In the third chapter, the technique of interpolation by ordinary punctual kriging (OPK) was evaluated, whose variograms were evaluated based on the residuals sum of squares, on an annual and seasonal scale. All the variographic models obtained showed a strong spatial dependence. Afterwards, cross-validation of OPK was performed based on the angular (β1) and linear (βo) coefficients of the simple linear regression line, MBE, RSME and MSDR (Mean squared deviation ratio), whose results showed an excellent performance of OPK.
|
416 |
Metamodelagem Kriging e sua aplicação na otimização de uma unidade de separação de propeno por destilação.VILLAR, Savana Barbosa de Brito Lélis. 18 April 2018 (has links)
Submitted by Kilvya Braga (kilvyabraga@hotmail.com) on 2018-04-18T15:21:01Z
No. of bitstreams: 1
SAVANA BARBOSA DE BRITO LÉLIS VILLAR - DISSERTAÇÃO (PPGEQ) 2016.pdf: 4927740 bytes, checksum: 02efe9b034cf0c99994b28b1588c4e7a (MD5) / Made available in DSpace on 2018-04-18T15:21:01Z (GMT). No. of bitstreams: 1
SAVANA BARBOSA DE BRITO LÉLIS VILLAR - DISSERTAÇÃO (PPGEQ) 2016.pdf: 4927740 bytes, checksum: 02efe9b034cf0c99994b28b1588c4e7a (MD5)
Previous issue date: 2016 / Metamodelos têm sido utilizados em inúmeras aplicações de engenharia, para aproximar
modelos matemáticos rigorosos quando seus códigos computacionais exigem tempo
demasiadamente grande para que a sua utilização prática seja possível. Neste contexto,
realizou-se uma aplicação do modelo Kriging para obtenção de resultados da metamodelagem de um processo de separação de propeno por destilação. Neste trabalho foi incluída a utilização das Redes Neurais Artificiais como parâmetro comparativo entre os metamodelos.O procedimento envolve o plano de amostragem Latin Hypercube Sampling, a seleção do tipo do metamodelo, estimação de parâmetros e validação. O desempenho dos metamodelos foi comparado com resultados obtidos através do modelo rigoroso pertencente ao simulador de processos Aspen Plus®, onde a predição dos dados mostrou-se com ótima precisão e esforço computacional significativamente menor. Outra contribuição importante deste trabalho é o
desenvolvimento da metodologia para otimização baseada na predição dos dados através do metamodelo Kriging utilizando a função fmincon do software Matlab e a comparação à otimização da ferramenta Optimization do Aspen Plus®, atingindo resultados minimizados para as cargas térmicas dos refervedores das três colunas de destilação e obedecendo as restrições de pureza do produto e taxa de boilup. / Metamodels have been used in many engineering applications, rigorous mathematical models to approximate when their computational codes require too great a time so that its practical use is possible. In this context, there was an application of the Kriging model to obtain metamodeling results of a propylene distillation separation process. This work included the use of Artificial Neural Networks as a comparison parameter between metamodels. The procedure involves the plan Latin Hypercube Sampling, selection of the type of metamodel, parameter estimation and validation. The performance of the metamodel was compared with results obtained from the rigorous model belonging to the process simulator Aspen Plus®, where the prediction of the data showed with great precision and significantly less computational effort. Another important contribution of this work is the development of methodology for optimization based on the prediction of data through Kriging metamodel using fmincon function of Matlab software and compared to optimize the optimization tool Aspen Plus®, reaching results for minimized thermal loads of reboilers the three-column distillation and obeying the purity of the product restrictions and boilup rate.
|
417 |
Inferência espacial de clorofila a por redes neurais artificiais aplicadas a imagens multiespectrais e medidas tomadas "in situ" /Ferreira, Monique Sacardo. January 2011 (has links)
Orientador: Maria de Lourdes Bueno Trindade Galo / Banca: Luciana de Resende Londe / Banca: Aluir Porfirio Dal Poz / Resumo: O conhecimento da distribuição espacial da concentração de componentes da água é de fundamental importância para inferir a respeito dos processos ecológicos que ocorrem num sistema hídrico sendo, entretanto, de difícil obtenção. Dentre as variáveis que merecem atenção no monitoramento de ambientes aquáticos, destaca-se a clorofila a, a qual é uma substância presente em algas responsáveis pela fotossíntese, organismos que constituem a base da cadeia alimentar nesses ambientes. Por se tratar de um pigmento fotossintetizante, a clorofila a apresenta a propriedade de interagir com a radiação eletromagnética, e dessa interação resultam diferentes processos, identificáveis por meio de sensores remotos. Assim sendo, a presente pesquisa se propôs a desenvolver um método de inferência da concentração de clorofila a utilizando Redes Neurais Artificiais (RNA). Utilizou-se como dados de entrada para a inferência combinações de bandas espectrais de uma imagem World View-2 e valores de concentração de clorofila a obtidos com um fluorômetro de campo, o qual possibilitou uma amostragem densa na área de estudos. A imagem multiespectral foi corrigida radiometricamente, eliminando efeitos de instrumentação e atmosféricos. Ainda, efetuou-se uma suavização espectral em cada uma das bandas e foi avaliado se esse tratamento na imagem possibilitaria... (Resumo completo, clicar acesso eletrônico abaixo) / Abstract: The knowledge of the spatial distribution of water components concentrations is of fundamental importance to infer about the ecological processes that occur in an aquatic system, however, is difficult to obtain it. Among the variables that deserve attention in the monitoring of aquatic environments, cite the chlorophyll a, which is a substance of photosynthetic algae, organisms that are the basis of the food chain in these environments. Because it is a photosynthetic pigment, chlorophyll a has the property to interact with electromagnetic radiation, and it results in different processes, identifiable through remote sensing. Thus, this research intended to develop a chlorophyll a concentration inference method using Artificial Neural Networks (ANN). As input for the inference, it was used combinations of World View-2 spectral bands and chlorophyll a concentration values obtained with a field fluorometer, which allowed a dense sampling in the study area. The multispectral imagery was radiometrically corrected, eliminating the instrumentation and atmospheric effects. Still, it was performed a spectral smoothing in each of the spectral bands and evaluated whether this treatment would give... (Complete abstract click electronic access below) / Mestre
|
418 |
Monitoramento e classificação de falhas em estruturas utilizando redes neurais artificiais /Chaves, Jacqueline Santos January 2016 (has links)
Orientador: Fábio Roberto Chavarette / Resumo: As técnicas para o monitoramento de falhas em estruturas têm se tornado cada vez mais importantes principalmente por seus benefícios quanto à maior segurança de vida e por auxiliarem as empresas responsáveis em construir edifícios, pontes e estruturas em geral a diminuírem seus custos com a manutenção das mesmas. Deste modo, a fim de desenvolver uma forma eficiente para a identificação e caracterização de falhas estruturais, esta dissertação tem por objetivo demonstrar uma aplicação de Redes Neurais Artificiais (RNAs) como uma técnica de monitoramento da integridade estrutural (SHM) para tal problema. Através de um modelo matemático de equações diferenciais ordinárias para a representação de uma estrutura predial, será desenvolvida uma RNA ARTMAP Fuzzy por ser uma rede flexível e estável em relação à sua habilidade em se adaptar às mudanças imprevistas do ambiente externo, para identificar tais falhas. / Abstract: The techniques for failures monitoring in mechanical engineering structures have become increasingly important especially for its benefits as the largest life-security and assist the responsible companies for build buildings, bridges and structures in general to lower their costs to maintenance of them. Thus, in order to develop an efficient way for the identification and characterization of structural failures, this work aims to demonstrate an application of Artificial Neural Networks (ANN) as a monitoring technique of structural health monitoring (SHM) for this problem. Through a dynamic model for the representation of a building structure, Fuzzy ARTMAP ANN will be developed to be a flexible and stable network with respect to its ability to adapt to unexpected changes in the external environment to identify such failures. / Mestre
|
419 |
Estimação de variáveis físico-químicas de solo por espectroscopia no visível e no infravermelho próximo através de sistemas inteligentes /Marconato, Evandro Sérgio. January 2011 (has links)
Orientador: Paulo José Amaral Serni / Banca: Roberto Lyra Villas Boas / Banca: José Alfredo Covolan Ulson / Resumo: O agronegócio possui participação fundamental no cenário econômico brasileiro, com reflexos importantes sobre o produto interno bruto, as exportações e a geração de empregos. A viabilidade econômica do setor agropecuário a partir da redução dos custos de produção, do aumento da produtividade e da redução ambiental causado pelo excesso de insumos, depende da Agricultura de Precisão. As informações referentes à variabilidade de diferentes propriedades do solo dentro da lavoura são fundamentais no processo de tomada de decisão. Uma das limitações da Agricultura de Precisão, a incapacidade de se obter as propriedades do solo de maneira rápida e com baixo custo, tem levado pesquisadores a desenvolver sensores para análise de solo em tempo real, sendo a espectroscopia uma das técnicas utilizadas. Neste trabalho, redes neurais artificiais (RNA) foram utilizadas como ferramenta inteligente para, a partir de uma massa de dados fornecidas por um sensor de solo em tempo real que utiliza a técnica de espectroscopia, estimar os teores de nitrogênio total e umidade do solo. O trabalho apresenta também uma comparação entre o resultado das redes neurais artificiais e o resultado da estimação de um software de análise quimiométrica utilizando a mesa massa de dados. o desempenho apresentado pelas redes neurais artificiais mostra ser possível sua utilização como ferramenta alternativa aos softwares de análise quimiométrica, além de permitir embarcar a inteligência de estimação, o que pode ser um passo preliminar para o desenvolvimento de equipamentos de baixo custo para análise de solo em tempo real / Abstract: Agribusiness has a fundaental role in the Brazilian economy, with important consequences on the gross domestic produtt, exports and job generation. The economic viability of the agricultural sector by reducing production costs, increasing productivity and reducing the environmental impact caused by excessive inputs, depends on Precision Agriculture. Information concerning the variability of different soil properties whitin the crop is essential in the process of decision making. One of the limitations of precision agriculture, the inability to obtain the soil characteristics quickly and cost effectively, has led researchers to develop sensors for soil analysis in real time, using the technique of spectroscopy. This work used artificial neural networks (ANN) as a smart tool for estimating the total nitrogen content and soil moisture from data provided by a real time soil sensor using the technique of spectroscopy. This work also presents a comparison between the estimation results of the artificial neural networks and the estimation results of a chemometric analysis software using the same database The performance of the neural networks shows its possible use as can alternative tool to chemometric analysis software and allows the estimative intelligence to be embedded, which may be a preliminary step for the development of low-cost equipment for real-time soil analysis / Mestre
|
420 |
Uma abordagem baseada em redes neurais artificiais para a estimação de densidade de solo /Nagaoka, Maria Eiko. January 2003 (has links)
Resumo: Este trabalho apresenta a aplicação de um sistema inteligente utilizando redes neurais artificiais para estimar valores de densidade do solo, a partir de parâmetros referentes à resistência do solo à penetração. Foram considerados solos preparados e não preparados, os não preparados foram os seguintes : teor de argila menor que 30 % (solo tipo 1), de 30 a 50 % (solo tipo 2) e maior que 50 % (solo tipo 3). Os preparados foram os seguintes: um com teor de argila menor que 30 % (solo tipo 1) e o outro com teor de argila maior que 50 % (solo tipo 3). O objetivo principal deste trabalho foi implementar diversas redes neurais do tipo perceptron multicamadas, alimentando-as com resistência do solo à penetração, teor de água e teor de argila, tendo como variável de saída a densidade do solo. Cada rede foi treinada variando o número de camadas escondidas e também variando o número de neurônios, de 10 a 40, em cada camada. Para cada arquitetura, a rede foi treinada 10 vezes, escolhendo-se no final do treinamento a arquitetura com menor erro relativo médio e menor variância em relação aos dados de validação. As análises realizadas mostraram que as arquiteturas de rede com apenas uma camada escondida forneceram melhores resultados. Todas as redes tiveram melhor desempenho em solo não preparado do que em solo preparado. A rede de arquitetura de 3 entradas, uma camada escondida com 30 neurônios e 1 saída forneceu excelente resultado para solo não preparado (com teor de argila entre 30 e 50 %). Constatou-se que a rede quando treinada com dados do solo preparado, juntamente com dados do solo não preparado, melhorou os resultados de estimação para o solo preparado, mas piorou para os solos não preparados. Constatou também que a rede quando treinada junto com dados que contém solo solto fornece resultados imprecisos. O mesmo ocorreu para dados com teor de água elevado. / Abstract: This work presents the development of an intelligent system using artificial neural networks to estimate values of soil density. Prepared and non-prepared soils were considered in this work. The non-prepared soils were the following ones: clay content lesser than 30 % (soil type 1), 30 to 50 % (soil type 2) and larger than 50 % (soil type 3). The prepared soils were the following ones: soil with clay content lesser than 30 % (soil type 1) and soil with clay content larger than 50 % (soil type 3). The main objective of this work was to implement several neural networks of type multilayer perceptron, feeding them with data concerning to the soil compaction characteristics. The output computed by the neural network was the respective density of these soils. Each neural network was trained varying both number of hidden layers and number of neurons, which was changed from 10 to 40 neurons in each layer. In each architecture the network was trained 10 times and selected architecture was always that having either the least mean relative error or the least variance in relation to validation data. The carried out analyses showed that the neural architectures having only a hidden layer were those that provided the best results. All neural networks have presented more efficient results for non-prepared soils than prepared soils. The neural network constituted by three inputs and one output, having 30 neurons at hidden layer, has provided excellent results for non-prepared soils (clay content between 30 and 50 %). It was also verified that the neural network when trained with data referent to non-prepared and soils, which were put in the same data set, it became the results referent to prepared soils more efficient, but the results for non-prepared soils become worse. Another observed point was when the network had been trained with data constituted by soft soil... (Complete abstract, click electronic address below). / Orientador: Ivan Nunes da Silva / Coorientador: Kléber Pereira Lanças / Doutor
|
Page generated in 0.1094 seconds