• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 764
  • 601
  • 70
  • 40
  • 37
  • 25
  • 22
  • 16
  • 12
  • 11
  • 11
  • 10
  • 9
  • 9
  • 6
  • Tagged with
  • 1859
  • 1859
  • 1208
  • 715
  • 702
  • 682
  • 510
  • 283
  • 241
  • 227
  • 221
  • 199
  • 182
  • 151
  • 149
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
381

Automatic Classification of text regarding Child Sexual Abusive Material

Fleron, Emil January 2018 (has links)
Sexual abuse is a horrible reality for many children around the world. As technology improves the availability of encryption schemes and anonymity over the internet, the perpetrators of these acts are increasingly hard to track. There have been several advances in recent time to automate the work of trying to catch these perpetrators and especially image recognition has seen great promise. While image recognition is a natural approach to these subjects as many abuses are documented and shared between perpetrators, there are potentially many leads that go unexplored if only focusing on images and videos. This study evaluates how methods of supervised machine learning solely based on textual data can point us to posts on forums which are connected to the distribution of child sexual abusive material. Feature representation techniques such as word-vectors, paragraphvectors and the FastText algorithm were used in conjunction with supervised machine learning methods based on deep learning, including methods of multilayer perceptrons, convolutional neural networks and long-short term memory models. The models were trained and evaluated on a dataset based on forum posts from a Dark Net leak from last year, and are evaluated as well on text collected from websites that had been manually verified by Ecpat. Those models were compared to a baseline model based on logistic regression. It was found that those state-of-the-art models achieve a similar performance, all outperforming the 'benchmark' logistic regression model. Further improvements can be achieved based on the availability of more annotated data.
382

Aplicação de redes neurais artificiais para estimativa da resistência à compressão do concreto a partir da velocidade de propagação do pulso ultra-sônico

Lorenzi, Alexandre January 2009 (has links)
Os ensaios não destrutivos servem como uma importante ferramenta para a análise de estruturas de concreto armado. A utilização de ensaios de velocidade de propagação do pulso ultra-sônico (VPU) permite realizar um acompanhamento das características do material ao longo de sua vida útil. Através da análise dos dados obtidos, pode-se averiguar a uniformidade do concreto, controlar a sua qualidade, acompanhar sua deterioração e, através de comparação com corpos de prova de referência e, até mesmo, estimar a resistência do mesmo. No entanto, as técnicas atuais para análise dos resultados coletados são, em grande parte, baseadas na sensibilidade dos profissionais que as aplicam. Para facilitar o controle e inspeção de estruturas de concreto armado é fundamental desenvolver estratégias para tornar esta análise mais simples e precisa. Este trabalho se baseia na hipótese de que a aplicação de Redes Neurais Artificiais (RNAs) pode gerar modelos de relacionamento úteis e acurados entre as características do concreto, sua compacidade e sua resistência à compressão. O intuito é determinar se com o uso de RNAs é possível estabelecer relações não-lineares que permitam estimar a resistência do concreto a partir do conhecimento de algumas propriedades básicas e da verificação da sua compacidade por meio de ensaios de VPU. Os resultados indicam que as RNAs podem ser usadas para gerar métodos numéricos robustos e flexíveis para estimativa da resistência à compressão a partir de dados de VPU. O estudo evidencia uma considerável melhora nos resultados de estimação da resistência quando se empregam modelos neurais, em comparação a modelos estatísticos tradicionais. Para os dados coletados, provenientes de diversas pesquisas, os modelos tradicionais geram estimativas com coeficientes de determinação que não ultrapassam um valor de R² de 0,40. Já as redes neurais conseguem ajustes com R² da ordem de 0,90. Além de contribuir para uma melhor análise de situações em que haja dúvidas sobre a resistência ou homogeneidade de elementos de concreto, o trabalho demonstra que modelos neurais são uma forma eficiente de ordenar e transferir conhecimento não estruturado. Constatou-se, ainda, que, dada sua capacidade de aprendizagem e de generalização do conhecimento adquirido, as RNAs se constituem em um meio rápido e preciso para modelagem de fenômenos complexos. / Nondestructive Testing (NDT) techniques are useful tools for analyzing reinforced concrete (RC) structures. The use of Ultrassonic Pulse Velocity (UPV) measurements enables the monitoring of changes in some critical characteristics of concrete over the service life of a structure. The interpretation of the data collected allows an assessment of concrete uniformity, and can be used to perform quality control, to monitor deterioration and even, by means of comparison against reference samples, to estimate compressive strength. Nonetheless, the current techniques for UPV data analysis are, on a large degree, based on the sensitivity of the professionals who apply these tests. For accurate diagnosis it is necessary to consider the various factors and conditions that can affect the results. To proper control and inspect RC facilities it is essential to develop appropriate strategies to make the task of data interpretation easier and more accurate. This work is based on the notion that using Artificial Neural Networks (ANNs) is a feasible way to generate workable estimation models correlating concrete characteristics, compacity and compressive strength. The goal is to determine if it is possible to establish models based on non-linear relationships that are capable of estimating with good accuracy the concrete strength based on previous knowledge of some basic material characteristics and UPV measurements. The study shows that this goal is achievable and indicates that neural models perform better than traditional statistical models. For the data collected in this work, provided by various researchers, traditional regression models cannot exceed R² = 0.40, while the use of ANNs allows the creation of models that can reach a determination coefficient R² = 0.90. The results make clear that, besides contributing to better the analysis of situations where there is doubts regarding concrete strength or uniformity, neural models are an efficient way to order and transfer unstructured knowledge. It was shown that, given the learning capacity and its ability to generalize acquired information into mathematical patterns, ANNs are a quick and adequate way to model complex phenomena.
383

[en] DATA DEBUGGING FOR REAL-TIME POWER SYSTEM MONITORING BASED ON PATTERN ANALYSIS / [pt] DEPURAÇÃO DE DADOS NA SUPERVISÃO EM TEMPO-REAL DE SISTEMAS DE POTÊNCIA VIA TÉCNICA DE RECONHECIMENTO DE PADRÕES

JULIO CESAR STACCHINI DE SOUZA 30 June 2006 (has links)
[pt] Na supervisão em tempo-real de sistemas de potência é fundamental que as informações recebidas do sistema de aquisição de dados não contenham erros. As decisões tomadas durante a operação do sistema se baseiam em análise que utilizam uma base de dados supostamente confiável. A presença de erros nos dados compromete as análises realizadas conseqüentemente as decisões tomadas a partir delas, podendo ocasionar problemas para a operação do sistema. Este trabalho propõe um novo método para a identificação de erros nos dados na supervisão em tempo-real de sistemas de potência. Técnicas de projeção de dados baseadas no mapa de Kohonen são utilizadas para mostrar que as inovações normalizadas, obtidas no estimadores de estado com capacidade de previsão, apresentam excelente capacidade de discriminação de erros quando comparadas a outras variáveis tais como medidas cruas e resíduos normalizados. É proposto um método que trata o problema de identificação de erros de dados como um problema de reconhecimento de padrões, onde as inovações normalizadas são utilizadas como variáveis de entrada para uma rede neural plástica que é responsável por identificar o erro presente. O método é capaz de tratar de forma integrada erros grosseiros nas medidas de erros topológicos envolvendo ramos de transmissão ou barras. Método proposto é testado para várias condições de operação envolvendo os mais diversos tipos de erro, utilizando os sistemas IEEE 24-barras e IEEE 118-barras. O desempenho do método é avaliado e aspectos como eficiência computacional, capacidade de generalização e implementação em tempo-real, entre outros, são também discutidos. / [en] Bad data detection and identification is one of the most important problems to be solved in real-time power system monitoring. During system operation, the decision-making process is based on analyses that use a database which is assumed to be reliable. Bad data can affect the results of these analyses and as a consequence the decisions taken may not be valid anymore. This may cause serious problems to system operation. This work presents a new method for debugging data in real- time power system monitoring. Data projection tecniques based on Kohonen´s self-organizing maps are employed to show that normalized innovations, obtained from a forecasting-aided state estimator, present excellent discrimination capability when compared to other variables such as raw measurements and normalized residuals. In the proposed method the problem of bad data identification is viewed as a pattern recognition problem, in which normalized innovations are use as input variables to a constructive artificial neural network that is responsible for identifying bad data. The method is able to distinguish between gross measurement and topological errors. Which can include branch or bus misconfigurations. The proposed method is tested for many different operating conditions involving different types of error. Tests are performed using data from the IEEE 24-bus and IEEE 118-bus systems. The performance of the method is evaluated and aspects such as computational efficiency, generalization capability and real-time implementation, among others, are also discussed.
384

Utilização de redes neurais artificiais para a classificação da resistência a antimicrobianos e sua relação com a presença de 38 genes associados a virulência isolados de amostras de Escherichia coli provenientes de frangos de corte

Rocha, Daniela Tonini da January 2012 (has links)
A Escherichia coli patogênica aviária (APEC), pertence à família Enterobacteriacea, é responsável por vários processos patológicos nas aves, atuando como agente primário ou secundário na aerossaculite, pericardite, perihepatite, peritonite, salpingite, onfalite, celulite, entre outros. O presente estudo aborda a resistência a antimicrobianos de amostras de E. coli (APEC) de uma forma inovadora, utilizando como ferramenta as redes neurais artificiais, metodologia inserida na linha de pesquisa do CDPA (Centro de Diagnóstico e Pesquisa em Patologia Aviária). A utilização de inteligência artificial, especificamente, as redes neurais artificiais (RNAs), está sendo crescentemente empregada como ferramenta para a análise de dados não lineares e multivariados, característica comum em fenômenos biológicos. O objetivo do presente trabalho foi demonstrar que é possível predizer o uso de antimicrobianos, utilizando trinta e oito genes responsáveis por distintos fatores de virulência, oriundos das amostras de Escherichia coli isoladas de frango de corte, através das redes neurais artificiais (RNAs). Além disso, verificou-se a relação entre o índice de patogenicidade (IP) e a resistência aos quatorze antimicrobianos que fazem parte do banco de dados usado para o desenvolvimento deste estudo. Neste trabalho foram utilizados os dados disponíveis referentes a 256 amostras de E. coli isoladas de camas de aviários, lesões de celulite e quadros respiratórios de frangos de corte. Para a confecção das redes neurais artificiais as entradas escolhidas foram: os índices de patogenicidade, as lesões induzidas em pintos de um dia de idade, a caracterização dos genes associados à patogenicidade, o bioquimismo, a origem das amostras e por fim, a motilidade. As redes neurais artificiais foram criadas realizando associações entre as variáveis de entrada com o objetivo de encontrar o modelo mais ajustado. As saídas utilizadas de acordo com Salle (2009) foram o comportamento das cepas de Escherichia coli frente aos 14 antimicrobianos. Para verificar se existia diferença significativa entre as médias dos índices de patogenicidade (IP) e as amostras sensíveis e resistentes aos 14 antimicrobianos utilizados neste estudo, realizou-se análise estatística com o auxílio do software JMP® 9.0.1 (SAS Institute Inc., 2010). Os resultados obtidos demonstram que as redes neurais artificiais foram capazes de realizar a classificação correta do comportamento das amostras com amplitude de 74,22% a 98,44%, desta forma tornando possível predizer a resistência antimicrobiana da Escherichia coli, através de modelo das RNAs. A análise estatística realizada para verificar a relação entre o IP e a resistência aos 14 antimicrobianos demonstrou que estas são variáveis independentes. Ou seja, podem haver picos no IP sem alteração na resistência antimicrobiana, ou até mesmo o contrário, alterações na resistência antimicrobiana sem mudanças no IP. / The avian pathogenic Escherichia coli (APEC), belongs to the family Enterobacteriacea, is responsible for various pathological processes in poultry, acting as an agent in the primary or secondary lesion such as: sacculitis, pericarditis, perihepatitis, peritonitis, salpingitis, omphalitis, cellulitis, among others. This study addresses the antimicrobial resistance of E. coli (APEC) strains in an innovative way, using tools such as artificial neural networks, methodology embedded in the CDPA´s search line (Center for Diagnostics and Research in Avian Pathology). The use of artificial intelligence, specifically artificial neural networks (RNAs), is being increasingly used as a tool for data analysis and nonlinear multivariate, common feature in biological phenomena. The objective of this study was to demonstrate that it is possible to predict the use of antimicrobials, using thirty-eight distinct genes responsible for virulence factors, derived from Escherichia coli isolates from broiler, through artificial neural networks (ANNs). Besides, it was found the relationship between pathogenicity index (PI) and resistance to fourteen antimicrobial forming part of the database used for the development of this study. In this study was used the data available for 256 samples of E. coli isolated from broiler litter, lesion of cellulitis and respiratory symptoms in broilers. To make the neural network inputs have been chosen: the indices of pathogenicity, the induced lesions in chicks at day old, characterization of genes associated with pathogenicity, biochemism, the source of samples and finally motility. Artificial neural networks have been created making associations between the input variables in order to find the best adjusted model. The outputs used according Salle (2009) was the behavior of Escherichia coli strains compared to 14 antimicrobials. To check whether there was a significant difference between the average indices for pathogenicity (IP) and the sensitive and resistant samples to 14 antimicrobials used in this study, statistical analysis was performed with the help of software JMP ® 9.0.1 (SAS Institute Inc., 2010). The results show that artificial neural networks were able of performing correct classification of the behavior of the samples with an amplitude of 74.22% to 98.44%, thereby making it possible to predict the antibiotic resistance of Escherichia coli, using ANNs model. The statistical analysis performed to assess the relationship between IP and resistance to 14 antibiotics showed that these variables are independent. That is, it can happen peaks in IP without change in antimicrobial resistance, or even the opposite, changes in antimicrobial resistance without changes in IP.
385

Análise empírica da formação de expectativas de inflação no Brasil : uma aplicação de redes neurais artificiais a dados em painel

Palma, Andreza Aparecida January 2007 (has links)
O objetivo principal deste trabalho é estudar empiricamente o processo de formação de expectativas inflacionárias no Brasil, no período recente (pós metas de inflação), através de um modelo conexionista, que aproxima a forma como os agentes fazem previsões. A coordenação das expectativas do mercado em relação à inflação futura é um aspecto crucial do regime de metas de inflação. Dessa forma, entender os fatores que afetam tais expectativas é de grande relevância para o direcionamento adequado da política monetária. Os dados para expectativas de inflação utilizados são provenientes da pesquisa FOCUS do Banco Central do Brasil, e constituem um painel de dados não balanceado. Os resultados obtidos nos permitem afirmar que a maior influência sobre as expectativas inflacionárias no período como um todo foi da volatilidade cambial, seguida pela variação no preço das commodities, pela defasagem de ordem um das expectativas, pela variação cambial e pela meta. Em menor magnitude, afetam as expectativas o resultado primário do governo, a defasagem de ordem dois e a taxa Selic. O comportamento desse efeito ao longo do tempo foi verificado através da análise de sensibilidade do produto da rede em resposta a cada uma das variáveis. No período de crise de confiança, há um expressivo descolamento das expectativas em relação à meta, com um aumento do efeito das demais variáveis. Resultado inverso ocorre no período pós-crise: o efeito da meta de inflação aumenta e das demais variáveis tende a se reduzir, ainda que em alguns casos tais efeitos sejam expressivos (como da defasagem de ordem um e da volatilidade cambial). Isso nos leva a concluir que o Banco Central vem consolidando sua credibilidade ao longo do tempo, mas que há ainda espaço para melhorias. / This work aims to empirically study the formation process of inflationary expectations in Brazil, in the recent period (after the introduction of the inflation targeting policy) by a connexionist model that approaches the way agents forecast. The coordination of market expectations in relation to the future inflation is a crucial aspect of the inflation targeting. This way, understanding the factors that affect such expectations has great relevance for the adequate aiming of the monetary policies. The data for inflation expectations used in this work are from the FOCUS research of the Brazilian Central Bank, and it constitutes a unbalanced data panel. The results obtained allow us to affirm that the biggest influence on the inflationary expectations in the period as a whole was from exchange rate volatility, followed by the commodities prices variation, by the first order lag of the expectations, by the exchange rate variation and by the target. In lesser magnitude, the primary result of the government, the second order lag and the Selic tax affect the expectations. The behavior of this effect throughout the time was verified through the analysis of sensitivity of the product of the network in reply to each one of the inputs. In the period of reliable crisis, there is an expressive shift of the expectations in relation to the target, with an increase of the effect of the other variables. Inverse result occurs in the after-crisis period: the effect of the inflation target increases and of the other variables tend to be reduced, despite in some cases such effect are expressive (as the first order lag and exchange rate volatility). Thus we may conclude that the Brazilian Central Bank has been consolidating its credibility throughout the time, but there is still an open space for improvements.
386

Uma Rede Neural Auto-Organizável Construtiva para Aprendizado Perpétuo de Padrões Espaço-Temporais / A growing self-organizing neural network for lifelong learning of spatiotemporal patterns

Bastos, Eduardo Nunes Ferreira January 2007 (has links)
O presente trabalho propõe um novo modelo de rede neural artificial voltado a aplicações robóticas, em especial a tarefas de natureza espaço-temporal e de horizonte infinito. Este modelo apresenta três características que o tornam único e que foram tomadas como guia para a sua concepção: auto-organização, representação temporal e aprendizado construtivo. O algoritmo de aprendizagem auto-organizada incorpora todos os mecanismos que são básicos para a auto-organização: competição global, cooperação local e auto-amplificação seletiva. A rede neural é suprida com propriedades dinâmicas através de uma memória de curto prazo. A memória de curto prazo é inserida na estrutura da rede por meio de integradores e diferenciadores, os quais são implementados na camada de entrada da rede. Nesta abordagem existe uma evidente separação de papéis: a rede é responsável pela não-linearidade e a memória é responsável pelo tempo. A construção automática da arquitetura da rede neural é realizada de acordo com uma unidade de habituação. A unidade de habituação regula o crescimento e a poda de neurônios. O procedimento de inclusão, adaptação e remoção de conexões sinápticas é realizado conforme o método de aprendizado hebbiano competitivo. Em muitos problemas práticos, como os existentes na área da robótica, a auto-organização, a representação temporal e o aprendizado construtivo são fatores imprescindíveis para o sucesso da tarefa. A grande dificuldade e, ao mesmo tempo, a principal contribuição deste trabalho consiste em integrar tais tecnologias em uma arquitetura de rede neural artificial de maneira eficiente. Estudos de caso foram elaborados para validar e, principalmente, determinar as potencialidades e as limitações do modelo neural proposto. Os cenários abrangeram tarefas simples de classificação de padrões e segmentação temporal. Os resultados preliminares obtidos demonstraram a eficiência do modelo neural proposto frente às arquiteturas conexionistas existentes e foram considerados bastante satisfatórios com relação aos parâmetros avaliados. No texto são apresentados, também, alguns aspectos teóricos das ciências cognitivas, os fundamentos de redes neurais artificiais, o detalhamento de uma ferramenta de simulação robótica, conclusões, limitações e possíveis trabalhos futuros. / The present work proposes a new artificial neural network model suitable for robotic applications, in special to spatiotemporal tasks and infinite horizon tasks. This model has three characteristics which make it unique and are taken as means to guide its conception: self-organization, temporal representation and constructive learning. The algorithm of self-organizing learning incorporates all the mechanisms that are basic to the self-organization: global competition, local cooperation and selective self-amplification. The neural network is supplied with dynamic properties through a short-term memory. The short-term memory is added in the network structure by means of integrators and differentiators, which are implemented in the input layer of the network. In this approach exists an evident separation of roles: the network is responsible for the non-linearity and the memory is responsible for the time. The automatic construction of the neural network architecture is carried out taking into account habituation units. The habituation unit regulates the growing and the pruning of neurons. The procedure of inclusion, adaptation and removal of synaptic connections is carried out in accordance with competitive hebbian learning technique. In many practical problems, as the ones in the robotic area, self-organization, temporal representation and constructive learning are essential factors to the success of the task. The great difficulty and, at the same time, the main contribution of this work consists in the integration of these technologies in a neural network architecture in an efficient way. Some case studies have been elaborated to validate and, mainly, to determine the potentialities and the limitations of the proposed neural model. The experiments comprised simple tasks of pattern classification and temporal segmentation. Preliminary results have shown the good efficiency of the neural model compared to existing connectionist architectures and they have been considered sufficiently satisfactory with regard to the evaluated parameters. This text also presents some theoretical aspects of the cognitive science area, the fundamentals of artificial neural networks, the details of a robotic simulation tool, the conclusions, limitations and possible future works.
387

Predição de propriedades de gasolinas a partir das suas composições

Buarque, Hugo Leonardo de Brito January 2006 (has links)
BUARQUE, Hugo Leonardo de Brito. Predição de propriedades de gasolinas a partir das suas composições. 2006. 206f. Tese (Doutorado em Física) - Curso de Pós-Graduação em Física, Universidade Federal do Ceará, Fortaleza, 2006. / Submitted by francisco lima (admir@ufc.br) on 2013-04-12T13:50:23Z No. of bitstreams: 1 2006_tese_hldbbuarque.pdf: 89844 bytes, checksum: 09dd0a3616e88ec1e47ab52519f63da5 (MD5) / Approved for entry into archive by Edvander Pires(edvanderpires@gmail.com) on 2014-02-25T20:59:40Z (GMT) No. of bitstreams: 1 2006_tese_hldbbuarque.pdf: 89844 bytes, checksum: 09dd0a3616e88ec1e47ab52519f63da5 (MD5) / Made available in DSpace on 2014-02-25T20:59:40Z (GMT). No. of bitstreams: 1 2006_tese_hldbbuarque.pdf: 89844 bytes, checksum: 09dd0a3616e88ec1e47ab52519f63da5 (MD5) Previous issue date: 2006 / Commercial gasolines are normally produced by blendin g hydrocarbon fractions obtained from the distillation of crude oil or from o ther petrochemical or refining processes, and carried through in order to comply with a variety of legal and ambient specifications at minimum cost. The quality for the use a nd commercialization of gasolines is evaluated through certain characteristics specified by governmental regulation. Such characteristics are usually determined by different methodologies and experimental techniques, since those depend on the ir constituents and their respective concentrations with a high complexity. Thus, blending of gasolines in petrochemical and refining industries is sometimes a very laborious procedure. The prediction of fuel properties from composition data is growing in importance in the last few years. Methods of group contribution have been usedin the last decades to predict properties of pure organic compounds and some mix ture parameters (e.g.,UNIFAC). However, most of the recent studies use artificial neural networks as a technique for prediction for fuel properties using the composition of classes of constituents or key-compounds as input data. The main a dvantage of a neural network is its capacity to extract general and unknown in formation for certain series of data (training), supplying useful and fast models for prediction. However, the use of neural networks trained to predict properties of fue ls produced from one given combination of petroleum fractions can not be suitable in the prediction of the characteristics of other gasolines produced from other orig ins due to the complexity and variability of gasoline composition. In this study, methods of multiple linear regression and artificial neural networks have been eval uated in the correlation and prediction of gasoline properties from information of composition obtained by gas chromatography, as well as a methodology for prediction of properties using a hybrid method composed of neural networks and group contribut ion. The developed model is evaluated and compared to other methods, revealing to be sufficiently promising for prediction of properties of pure components and com plex mixtures. / As gasolinas comerciais são normalmente produzidas a partir de combinações de frações oriundas da destilação do petróleo ou de outros processos petroquímicos e de refino e realizadas de modo a atender uma variedade de especificações legais e ambientais, com o mínimo de custo possível. A qualidade para o uso e comercialização de uma gasolina é avaliada através de cer tas características especificadas por leis e normas governamentais. Estas caracter ísticas são normalmente determinadas por diferentes metodologias e técnicas experimentais, haja vista que dependem dos seus constituintes e suas respecti vas concentrações com uma complexidade bastante elevada, tornando a formulação da gasolina originada em refinarias e petroquímicas, um procedime nto muitas vezes bastante laborioso. O intuito de se predizer propriedades de derivados de petróleo a partir de dados de composição é antigo e vem crescendo em importância nos últimos anos. Métodos de contribuição de grupos têm sido utilizados ao longo das últimas décadas para predizer propriedades de compostos orgânicos puros e alguns parâmetros de misturas (e.g., UNIFAC). Entretanto, a maior parte dos estudos mais recentes utiliza redes neurais artificiais como técnica para predição de propriedades de combustíveis usando a composição de grupos de compostos ou mesmo de compo stos-chave como informação de entrada. A principal vantagem de um a rede neural é sua capacidade de extrair informações gerais e desconhecidas pa ra certa série de dados (treinamento), fornecendo modelos de predição úteis e rápidos tanto para sistemas lineares como não-lineares. Porém, dada a complexidade e variabilidade dos constituintes das gasolinas, a utilização de redes neurais t reinadas para modelar as propriedades destes combustíveis produzidos a partir de uma dada combinação de frações petrolíferas pode não se adequar na predição da s características de gasolinas obtidas a partir de uma outra origem. Neste estudo, métodos de regressão linear múltipla e redes neurais artificiais foram avali ados na correlação e predição de propriedades de gasolinas a partir de informações de com posição obtidas por cromatografia gasosa, como também foi desenvolvida uma metodologia de predição de propriedades utilizando um método híbrido de redes neurais e contribuição de grupos. O modelo desenvolvido é avaliado e comparado aos demais, mostrando-se bastante promissor para predição de propriedades de componentes puros e misturas mais complexas.
388

Redes neurais artificiais aplicadas ao reconhecimento de speed cheating em jogos online de computador / Neural networks applied to speed cheating recognition in online computer games

Gaspareto, Otavio Barcelos January 2008 (has links)
No presente trabalho, é testada e avaliada a aplicação de Redes Neurais Artificiais no combate de trapaças (cheating, em inglês) do tipo speed cheating em jogos online massivos de múltiplos jogadores, também conhecidos como MMOG (Massively Multi- player Online Games). Os MMOG representam um modelo de negócio onde quantias significativas de recursos financeiros estão envolvidas, e crescem a cada dia. Os mode- los para o combate de trapaças, que possam afastar jogadores de jogos ou servidores, estão localizados na camada de rede, à nível de protocolo. Analisando o estado-da-arte, constatou-se que não existem trabalhos explorando a área de Inteligência Artificial para este fim, tornando-se assim relevante o estudo de sua aplicabilidade. As Redes Neurais Artificiais foram escolhidas por terem grande poder de abstração, generalização e plasti- cidade. Através dos resultados obtidos comparando-se duas abordagens de arquiteturas, as redes Perceptron de múltiplas camadas (MLP) e as redes com atraso no tempo focadas (FTLFN), é possível constatar que é viável a utilização das mesmas para este fim, tendo-se alcançado resultados positivos no combate de speed cheating em MMOGs. / In the present work, Artificial Neural Networks are tested and evaluated in order to avoid a specific type of cheating, called Speed Cheating, in massively multi-player online games (MMOG). The MMOG represent a business model where meaningful financial resources amounts are involved, and increase each day. The models to avoid cheating, that could keep off players from games and servers, are localized in the network layer, at the protocol level. Examining the state-of-art, it was observed that research explor- ing the Artificial Intelligence application to this goal becomes relevant. The Artificial Neural Networks were chosen by their significant abstraction, generalization and plas- ticity characteristics. Through the results’s comparison from two different architectures approaches, the multi layer Perceptron network (MLP) and the focused time lagged net- work (FTLFN), it was possible to conclude that their utilization avoiding speed cheating in MMOG is possible, once good results were found in this work.
389

Predição de séries temporais utilizando algoritmos genéticos

Marques, Ivonei da Silva January 2012 (has links)
Este trabalho apresenta um estudo sobre o paradigma de Algoritmos Genéticos aplicados a área de Predições de Séries Temporais. O resultado deste trabalho é apresentado na forma de comparação dos resultados obtidos entre o Modelo Clássico de Predição (UCM), Redes Neurais Artificiais (RNAs) e o modelo de Algoritmos Genéticos desenvolvido neste trabalho. Este estudo foi realizado trabalhando-se basicamente com o Índice Mensal de Produção Industrial do Estado do Rio Grande do Sul fornecido pelo IBGE (Instituto Brasileiro de Geografia e Estatística). Os resultados obtidos mostram que os Algoritmos Genéticos podem atingir níveis satisfatórios de precisão em relação aos valores preditos quando comparados com os valores reais. A validação é feita com predições de um passo à frente e de sete passos à frente. Estas predições são em relação aos sete meses iniciais do ano de 1993. / This work presents a study of Genetic Algorithms paradigm applied to Forecasting Time Series. The results are compared with the obtained with the Classic Model of Prediction (UCM), Artificial Neural Networks (RNAs). This study was accomplished using with the Monthly Index of Industrial Production of the State of Rio Grande do Sul, supplied by the IBGE(Instituto Brasileiro de Geografia e Estatística). The results show that the Genetic Algorithms can accomplish a satisfactory precision when compared with the real values. The validation is made with predictions, one and seven steps ahead. These predictions are equivalent to the seven initial months of 1993.
390

Gerenciamento através de redes neurais artificiais das atividades de produção de reprodutoras pesadas e do frango de corte, de um incubatório e de um abatedouro avícola

Spohr, Augusto January 2011 (has links)
Este estudo utilizou uma série histórica de dados de quatro etapas de uma produção avícola: reprodutoras pesadas, um incubatório, produção de frangos de corte e um abatedouro de frangos de corte pertencente a uma integração avícola do Rio Grande do Sul, no período de junho de 2009 a janeiro de 2010. As linhagens utilizadas foram COBB, ROSS e AVIAN. A diferença entre as médias das variáveis dos dados iniciais e a estatística descritiva foram calculadas com o programa computacional SigmaStat® Statistical Software para Windows 2.03. Foram analizados dados de 27 produtores de matrizes de frango de corte, um incubatório, 147 produtores de frango de corte e um abatedouro onde continham registro de: origem do nascedouro no incubatório, origem da incubadoura no incubatório, quantificação da contaminação por Salmonella sp., Aspergillus sp., Escherichia Coli, Pseudomonas sp. nos nascedouros, número de aviários por incubadoura, ovo de cama/ninho, percentual de linhagem, ovo trincado, minutos de incubação, minutos de nascedouro, horas de estoque, eclosão total, eclosão vendável, ovos incubáveis, aproveitamento de ovos, idade da matriz, perda de peso de ovo, peso de pinto, peso de ovo, contaminação na transferência, tipo de pinto, fertilidade, tipo de máquina, produtor, extensionista, peso do frango de primeira semana, peso do frango de segunda semana, peso do frango de terceira semana, peso do frango de quarta semana, peso do frango de quinta semana, mortalidade do frango na primeira semana, mortalidade do frango na segunda semana, mortalidade do frango na terceira semana, mortalidade do frango na quarta semana, mortalidade do frango na quinta semana, linhagem, condenação total, condenação parcial. As redes neurais foram construídas através do programa computacional NeuroShell®Predictor e NeuroShell®Classifier, desenvolvido pela Ward Systems Group. O programa identificou as variáveis escolhidas como “entradas” para o cálculo do modelo preditivo e variável de “saída” aquela a ser predita. Na primeira parte foram apresentados o treinamento das redes neurais artificiais onde foram utilizadas 50% das linhas de registro de junho de 2009 a janeiro de 2010, utilizou-se todas as variáveis de entrada que antecedem as seguintes variáveis de saída para cada rede: eclosão total, eclosão vendável, fertilidade, mortalidade de 1 semana, mortalidade de 5 semanas, perda de peso de ovo, peso de 5 semanas, tipo de pinto, condenação parcial e condenação total. A segunda parte destinou-se à validação dos modelos, onde se utilizou os outros 50% das linhas de registro com todas as variáveis de entrada que antecedem as mesmas variáveis de saída. Pode-se concluir que as redes neurais artificiais foram capazes de explicar os fenômenos envolvidos entre as quatro etapas da cadeia avícola, matrizes de frango de corte, incubatório, produção de frangos de corte e abatedouro. Esta técnica demonstra cientificamente que se podem criar critérios objetivos, onde estes se tornam uma importante ferramenta nas decisões que serão tomadas pelos gestores destes importantes setores da cadeia avícola. / This study used a historic series of four stages of poultry production: breeders, hatchery, production of broilers and broiler chicken slaughterhouse owned by a poultry integration of Rio Grande do Sul in the period from June 2009 to January 2010. The strains used were COBB, ROSS and AVIAN. The difference between the averages of the initial data and descriptive statistics were calculated with the computer program SigmaStat ® Statistical Software for Windows 2.03. We analyzed data from 27 breeders, 1 hatchery, 147 broiler producers and a slaughterhouse where contained the records of: origin of the hatcher in the hatchery, the origin of incubator in the hatchery, and quantification of Salmonella sp., Aspergillus sp., E. coli, Pseudomonas sp. contamination in hatcher, number of poultry per incubator, egg floor / nest, percentage of lineage, cracked egg, minutes of incubation, the birthplace of minutes, hours in inventory, total hatch, hatching salable, hatching eggs, usable eggs, breeder age, egg weight loss, chick weight, egg weight, contamination in the transfer, type of chick, fertility, machine type, producer, extension workers, the chicken weight of the first week, chicken weight of the second week, chicken weight of the third week, chicken weight of the fourth week, chicken weight of the fifth week, mortality of the chicken in the first week, mortality of chickens in the second week, mortality of the chicken in the third week, mortality of the chicken in the fourth week, mortality of the chicken in the fifth week, lineage, total condemnation, partial condemnation. The neural networks have been built through the computer program NeuroShell Predictor ® and NeuroShell®Classifier, developed by Ward Systems Group. The program identified the variables selected entries as “inputs” for the calculation of the predictive model and the variable “output” those to be predicted. In the first part were presented the training of artificial neural networks were used 50% of the lines of record from June 2009 to January 2010, was used all the input variables that precedes the following output variables for each network: total hatching , salable hatch, fertility, mortality of one week, mortality of five week , egg weight loss, weight of five weeks, type of chick, partial-condemnation and total condemnation. The second part was intended to validate the models, where were used the other 50% of the records lines with all input variables s that precedes the same output variables. It can be concluded that artificial neural networks were able to explain the phenomena involved between the four stages of poultry production, breeders, hatchery, broiler production and slaughterhouse. This technique proves scientifically that we can create objective criteria, and this methodology become an important tool in making decisions taken by managers of these important sectors of the poultry chain.

Page generated in 0.0773 seconds