• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 69
  • 10
  • 8
  • 8
  • 3
  • 1
  • Tagged with
  • 127
  • 127
  • 101
  • 21
  • 21
  • 18
  • 18
  • 18
  • 16
  • 15
  • 13
  • 13
  • 13
  • 13
  • 12
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
101

Modulators of innate gut immunity to enteric viral infections : murine norovirus (MNV) as a model

Eisa, Osama Eltayeb Idris January 2018 (has links)
Challenged by a huge and diverse antigenic stimulus, the intestinal mucosa has developed a unique immune system that mainly functions to maintain tolerance to innocuous antigens while retaining the ability to respond swiftly to pathogenic threats. Central to this specialised immune system are the Intraepithelial Lymphocytes (IELs). These cells are uniquely located between Intestinal Epithelial Cells (IECs) ready to respond to exogenous antigens in the intestinal lumen. The intestinal immune system is constantly influenced, not only by the commensal microbiota, but also by the nutritional status of the host and the availability of certain essential micronutrients that are derived from a healthy-balanced diet. Additionally, age has a significant impact on the efficiency of gut immunity in responding to infectious pathogens, as reflected by the increased burden of gastrointestinal infections at the extremes of age. In this thesis, using the Murine Norovirus (MNV) oral infection model, I aimed to characterize intestinal mucosal antiviral-responses with specific focus on the role of IELs, the impact of aging and the influence of certain micronutrients whose effects are mediated through the Aryl Hydrocarbon Receptor (AhR). Employing different knock-out and adoptive transfer experiments, I concluded that, at least in our experimental conditions and in a viral strain-specific manner, the activated IELs are not essential and may play a minor role in the protective response against MNV infection. This work also demonstrated that various MNV virus strains activate IELs differentially and for the first time (to our knowledge) revealed distinct abilities of these different Norovirus variants to infect IECs. Recognising an impaired response in old (2-year) mice, we were also able to identify a specific defect in the IFN-Lambda response of aged IECs. Furthermore, using the model of MNV infection to investigate the role of AhR signalling, the data I generated suggested a direct link between constitutive AhR signalling and innate interferon-mediated responses. These findings have uncovered a potential preventive/therapeutic targets for enhancing anti-viral responses.
102

Le récepteur Aryl hydrocarbon au niveau de la barrière hémato-encéphalique : implication dans la régulation de l'expression de ABCB1, ABCG2 et du CYP1B1 / The aryl hydrocarbon receptor at the human blood-brain barrier : implication in the regulation of ABCB1, ABCG2 and CYP1B1 expression

Jacob, Aude 03 October 2012 (has links)
Les principaux transporteurs ABC et cytochromes P450 exprimés au niveau des microvaisseaux cérébraux chez l’homme sont l’ABCB1/P-gp, l’ABCG2/BCRP et le CYP1B1. Au niveau des organes périphériques, la régulation de l’expression de ces trois marqueurs fait intervenir des facteurs de transcription et notamment le récepteur aryl hydrocarbon (AhR). Or les transcrits d’AhR sont très exprimés au niveau des microvaisseaux cérébraux humains. Les travaux de cette thèse ont donc dans un premier temps été consacrés à l’étude de l’implication de la voie du récepteur Ah dans la régulation de l’expression de l’ABCB1, de l’ABCG2 et du CYP1B1 au niveau de la barrière hémato-encéphalique. In vivo, nous avons mis en évidence qu’un traitement aigu par la dioxine (ou TCDD), ligand puissant d’AhR, induisait l’expression génique et protéique du Cyp1b1 au niveau des microvaisseaux cérébraux de rats adultes Srague-Dawley. De même, in vitro, l’exposition au TCDD a fortement induit l’expression du CYP1B1 dans la lignée hCMEC/D3, un modèle in vitro de l’endothélium cérébral humain et le recours à la technique de l’ARN interférence nous a permis de démontrer que le récepteur Ah était impliqué dans les effets observés. En revanche, que ce soit in vivo ou in vitro, l’exposition au TCDD n’a entrainé aucune modification significative de l’expression de l’ABCB1 ou de l’ABCG2. Dans un second temps, nous avons étudié l’interrelation entre la voie AhR et les voies de réponse à l’hypoxie cellulaire. Les différentes expériences réalisées sur la lignée cellulaire hCMEC/D3 ont mis en évidence une interaction non réciproque entre ces deux voies de signalisation : en cas d’activation simultanée, la réponse à l’hypoxie abolit la réponse AhR tandis que l’activation de la voie AhR ne modifie pas la réponse adaptative à l’hypoxie. / ABCB1 (P-gp), ABCG2 (BCRP) and CYP1B1 are the main ABC transporters and cytochrome P450 enzymes expressed at the human blood-brain barrier (BBB). In peripheral tissue, expression of these proteins is regulated by transcription factors such as the aryl hydrocarbon receptor (AhR). Interestingly, high levels of AhR mRNA are detected in human brain microvessels. We therefore investigated the potential implication of AhR in the regulation of ABCB1, ABCG2 and CYP1B1 expression. In vivo, a single dose of TCDD, a highly potent AhR ligand, increased Cyp1b1 transcripts and protein expression in rat brain microvessels. Similarly, exposing hCMEC/D3 cells, an in vitro promising model of human BBB, to TCDD induced CYP1B1 expression. Using small interfering RNA, we established AhR involvement in TCDD effects. However, either in vivo or in vitro TCDD treatment had no effect on ABCB1 or ABCG2 expression. Next, we investigated the crosstalk between AhR and hypoxia signalling pathways in case of simultaneous activation. Our experiments revealed that a crosstalk between these two pathways effectively occurred in hCMEC/D3 cells: hypoxia inhibited AhR response but not the reverse.
103

Exploring the Independent and Combined Effects of Persistent Organic Pollutants and Hypoxia on Human Adipocyte Functions

Myre, Maxine January 2014 (has links)
Persistent organic pollutants (POPs) and adipose tissue hypoxia have been shown to independently affect adipocyte functions. The goals of this study were to (1) determine the effect of PCB-77, PCB-153, and DDE on the differentiation of human preadipocytes, and (2) investigate the cross-talk between PCB-77 and hypoxia in differentiated human adipocytes. First, human preadipocytes were exposed to PCB-77, PCB-153, or DDE during the entire 14-day differentiation period. We found no effect of low POP levels on lipid accumulation. Second, differentiated human adipocytes were exposed to a combination of PCB-77 and hypoxia. We demonstrated gene-specific cross-talk between PCB-77 and hypoxia, showing an additive effect of PCB-77 on VEGF, MCP-1, and adiponectin, as well as an inhibition of PCB-77-induced expression of CYP1A1 by hypoxia. This work has expanded our understanding of the role of POPs and hypoxia in differentiated human adipocytes.
104

REGULATION OF INTRACELLULAR ARYL HYDROCARBON RECEPTOR PROTEIN LEVELS

Chen, Jinyun 01 January 2020 (has links)
The aryl hydrocarbon receptor (AHR) is a ligand-activated signaling molecule which controls tumor growth and metastasis, T cell differentiation, and liver development. Expression levels of this receptor protein are sensitive to the cellular p23 protein levels in immortalized cancer cell lines. As little as 30% reduction of the p23 cellular content can suppress the AHR function. Here we reported that down-regulation of the p23 protein content in normal, untransformed human bronchial/tracheal epithelial cells to 48% of its content also suppresses the AHR protein levels to 54% of its content. This p23-mediated suppression of AHR is responsible for the repression of (1) the ligand-dependent induction of the cyp1a1 gene transcription; (2) the benzo[a]pyrene- or cigarette smoke condensate-induced CYP1A1 enzyme activity, and (3) the benzo[a]pyrene and cigarette smoke condensate-mediated production of reactive oxygen species. Reduction of the p23 content does not alter expression of oxidative stress genes or production of PGE2. Down-regulation of p23 suppresses the AHR protein levels in two other untransformed cell types, namely human breast MCF-10A and mouse immune regulatory Tr1 cells. Collectively, down-regulation of p23 suppresses the AHR protein levels in normal and untransformed cells and can in principle protect our lung epithelial cells from AHR-dependent oxidative damage caused by exposure to agents from environment and cigarette smoking. The AHR is expressed in triple-negative and non-triple-negative breast cancer cells. It affects breast cancer growth and crosstalk with the estrogen receptor signaling. Normally the AHR is degraded shortly after ligand activation via the action of 26S proteasome. Here we report that the piperazinylpyrimidine compound Q18 triggers AHR protein degradation which is mediated through chaperone-mediated autophagy in triple-negative breast cancer cells (MDA-MB-468 and MDA-MB-231). This lysosomal degradation of AHR exhibits the following characteristics: (1) not observed in non-triple-negative breast cancer cells (MCF-7, T47D, and MDA-MB-361); (2) inhibited by progesterone receptor B but not estrogen receptor alpha; (3) reversed by chloroquine but not MG132; (4) required LAMP2A; (5) triggered by 6 amino-nicotinamide and starvation and (6) involved AHR-LAMP2A interaction mediated by 6 amino-nicotinamide and starvation. The NEKFF sequence localized at amino acid 558 of human AHR is a KFERQ-like motif of chaperone-mediated autophagy, essential for the LAMP2A-mediated AHR protein degradation.
105

Optimizing the human aryl hydrocarbon receptor (hAHR) expression in Pichia pastoris

qian, junyu 01 January 2022 (has links)
The aryl hydrocarbon receptor (AHR) is a transcription factor which heterodimerizes with the aryl hydrocarbon receptor nuclear translocator (Arnt) to regulate downstream gene transcription. For the purpose of studying the crystal structure of human aryl hydrocarbon receptor (hAHR), it is essential to obtain abundant amount of pure recombinant protein.Basing on the benefits of using P. pastoris system to produce recombinant protein, including appropriate folding, secretion of interest proteins to the external environment of the cell, and easier purification process of protein due to the its limited production of endogenous secretory proteins [1], our lab chose P. pastoris yeast as the host to overexpress human AHR. My lab has successfully used the protease-deficient P. pastoris (ySMD1163) strain to express AHR [2], but unfortunately the yield is modest, presumably due to low copy number. My work addressed whether increasing the copy number of hAHR in the yeast genome would increase the expression level of hAHR in Pichia pastoris. Results from my experiments showed that although the copy number correlated with the expression levels of hAHR, the increased expression of the hAHR largely in the pellet, suggesting that the soluble expression of hAHR can’t be enhanced merely by increasing its production.
106

Investigation and modulation of the aryl hydrocarbon receptor nuclear translocator-dependent signaling mechanisms

Jensen, Kyle Andrew 01 January 2006 (has links)
The aryl hydrocarbon receptor nuclear translocator (ARNT) is a promiscuous protein serving as a required dimerization partner for the aryl hydrocarbon receptor (AhR) and hypoxia inducible factor-1α (HIF-1α) transcription factors. Additionally it serves as a potent co-activator for estrogen receptor (ER) signaling. We sought to take advantage of these cross-talk mechanisms by designing an AhR construct that can influence the regulation of these pathways by sequestering ARNT. CΔ553 is a truncated form of the AhR lacking the C-terminal 553 amino acids which harbors the complete transactivation (TAD) and significant portions of the ligand binding (LBD) domains. Altering the LBD allows CΔ553 to become constitutively active and has been shown to associate with ARNT and bind DNA. Without the TAD, CΔ553 cannot recruit co-activators to the promoter so that no activation of gene transcription may occur. Transient transfection studies using a corresponding luciferase reporter plasmid in MCF-7 cells showed that CΔ553 effectively suppressed the AhR, HIF-1α, and ER signaling pathways. RT/real-time QPCR data showed that CΔ553 blocked the up-regulation of the target genes controlled by AhR ( CYP1A1 ), HIF-1α ( VEGF, aldolase C , and LDH-A ), and ER ( GREB1 ) in breast cancer cells. Since both HIF-1α and ER are highly active in ER-positive breast cancers, CΔ553 has the potential to be developed as a protein drug to treat breast cancer by blocking these two signaling pathways. Seeking to determine if complete suppression of genes is possible with CΔ553, a tetracycline regulated retroviral expression system is investigated along with the possibilities for cellular administration via the HIV-1 Tat protein transduction domain. Since ARNT dimerizes with both AhR and HIF-1α, we present further studies looking into the role protein factors play in the activation of each system. Previously within our lab p23 and Cyp40, two components of the hsp90 chaperon complex, were found to facilitate the formation of the AhR•ARNT•DNA binding complex. Analysis of these proteins within the hypoxia signaling pathway found that only p23 was capable of generating the HIF-1α•ARNT•DNA binding complex.
107

Mechanistic studies on protein factors dependent formation of the aryl hydrocarbon receptor -DNA complex

Shetty, Premnath Vithal 01 January 2003 (has links) (PDF)
Dioxins and several halogenated polycyclic aromatic hydrocarbons belong to a class of toxic environmental pollutants that give rise to a myriad of teratogenic and carcinogenic responses and are of major concern from a human health perspective due to their widespread distribution. Apart from an array of toxic endpoints, they affect the expression of a variety of xenobiotic metabolizing enzymes including CYP1A1 and 1A2. Data generated by rodent studies have shown that most, if not all, of their biological and toxic effects are mediated through binding to the aryl hydrocarbon receptor (AhR). Upon ligand binding, AhR translocates into the nucleus and heterodimerizes with AhR-nuclear translocator (Arnt); the heterodimer binds to the dioxin response element (DRE) located upstream to the promoter region of target genes, leading to their transcription. The AhR/Arnt/DRE complex has been well characterized and can be observed readily by the gel shift assay. However, the mechanism for this AhR complex formation is unclear. Baculovirus expressed, metal resin-purified human AhR and Arnt are unable to bind the DRE in a ligand-dependent manner unless crude extracts, such as the rabbit reticulocyte lysate (RRL), are reconstituted with these proteins. Proteins in the RRL are responsible for this restoration of the gel shift complex because the activity is sensitive to both heat and proteolytic treatments. Fractionation of the RRL using centricon devices gave the enriched activity in the C10 retentate fraction (C10R). Screening gel shift assays and immunodepletion studies showed that p23 and CyP40, but not hsp90 and hsp70, could be the protein factors. Purified bacterial expressed p23 restored the gel shift complex; and the mechanism is mediated at the heterodimerization step and is hsp90-dependent. However, p23 is not the major factor since the same amount of C10R as that of purified p23 produced a much more pronounced gel shift activity and was insensitive to geldanamycin and apyrase. CyP40 is unable to restore the complex formation directly; however, our data suggested that some of the CyP40-interacting proteins restore the AhR/Arnt/DRE complex formation.
108

Non-Genomic AhR-Signaling Modulates the Immune Response in Endotoxin-Activated Macrophages After Activation by the Environmental Stressor BaP

Großkopf, Henning, Walter, Katharina, Karkossa, Isabel, von Bergen, Martin, Schubert, Kristin 24 March 2023 (has links)
Emerging studies revealed that the Aryl hydrocarbon receptor (AhR), a receptor sensing environmental contaminants, is executing an immunomodulatory function. However, it is an open question to which extent this is achieved by its role as a transcription factor or via non-genomic signaling. We utilized a multi-post-translational modification-omics approach to examine non-genomic AhR-signaling after activation with endogenous (FICZ) or exogenous (BaP) ligand in endotoxin-activated (LPS) monocyte-derived macrophages. While AhR activation affected abundances of few proteins, regulation of ubiquitination and phosphorylation were highly pronounced. Although the number and strength of effects depended on the applied AhR-ligand, both ligands increased ubiquitination of Rac1, which participates in PI3K/AKT-pathway-dependent macrophage activation, resulting in a pro-inflammatory phenotype. In contrast, cotreatment with ligand and LPS revealed a decreased AKT activity mediating an antiinflammatory effect. Thus, our data show an immunomodulatory effect of AhR activation through a Rac1ubiquitination-dependent mechanism that attenuated AKT-signaling, resulting in a mitigated inflammatory response.
109

The Aryl Hydrocarbon Receptor Regulates an Essential Transcriptional Element in the Immunoglobulin Heavy Chain Gene

Wourms, Michael J. January 2013 (has links)
No description available.
110

THE ROLE OF ARYL HYDROCARBON RECEPTOR AND CYP1A2 IN PCB-INDUCED DEVELOPMENTAL NEUROTOXICITY

CURRAN, CHRISTINE PERDAN January 2007 (has links)
No description available.

Page generated in 0.2764 seconds