• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 109
  • 33
  • 16
  • 3
  • Tagged with
  • 161
  • 161
  • 71
  • 47
  • 39
  • 39
  • 29
  • 27
  • 26
  • 24
  • 23
  • 23
  • 22
  • 21
  • 21
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Géostatistique et assimilation séquentielle de données

Wackernagel, Hans 25 May 2004 (has links) (PDF)
La géostatistique spatio-temporelle traditionnelle n'est pas en mesure de décrire adéquatement la dynamique, en général fortement non-linéaire, de processus spatio-temporels multivariables. Pour cela des modèles de transport physico-chimiques sont en général bien mieux adaptés. Cependant, étant donné que ces derniers ne maîtrisent pas totalement la complexité des processus qu'ils cherchent à décrire, soit parce qu'ils sont basés sur des hypothèses simplificatrices, soit parce que l'information servant à établir les conditions initiales et aux limites est imparfaite, il est opportun d'introduire des techniques statistiques servant à les guider pour assimiler un flot de mesures émanant de capteurs automatiques. Des projets récents au Centre de Géostatistique de l'Ecole des Mines de Paris ont permis d'explorer l'application de ces techniques dans le domaine de l'océanographie et en pollution de l'air. Il s'est très vite avéré que la géostatistique offrait des concepts et des approches qui pouvaient contribuer à enrichir les techniques d'Assimilation Séquentielle de Données. La thèse de Laurent Bertino et des publications ultérieures ont permis de développer cette thématique porteuse, dont la présente synthèse établit un compte-rendu.
12

La décomposition en polynôme du chaos pour l'amélioration de l'assimilation de données ensembliste en hydraulique fluviale

El Moçayd, Nabil 01 March 2017 (has links) (PDF)
Ce travail porte sur la construction d'un modèle réduit en hydraulique fluviale avec une méthode de décomposition en polynôme du chaos. Ce modèle réduit remplace le modèle direct afin de réduire le coût de calcul lié aux méthodes ensemblistes en quantification d'incertitudes et assimilation de données. Le contexte de l'étude est la prévision des crues et la gestion de la ressource en eau. Ce manuscrit est composé de cinq parties, chacune divisée en chapitres. La première partie présente un état de l'art des travaux en quantification des incertitudes et en assimilation de données dans le domaine de l'hydraulique ainsi que les objectifs de la thèse. On présente le cadre de la prévision des crues, ses enjeux et les outils dont on dispose pour prévoir la dynamique des rivières. On présente notamment la future mission SWOT qui a pour but de mesurer les hauteurs d'eau dans les rivières avec un couverture globale à haute résolution. On précise notamment l'apport de ces mesures et leur complémentarité avec les mesures in-situ. La deuxième partie présente les équations de Saint-Venant, qui décrivent les écoulements dans les rivières, ainsi qu'une discrétisation numérique de ces équations, telle qu'implémentée dans le logiciel Mascaret-1D. Le dernier chapitre de cette partie propose des simplifications des équations de Saint-Venant. La troisième partie de ce manuscrit présente les méthodes de quantification et de réduction des incertitudes. On présente notamment le contexte probabiliste de la quantification d'incertitudes et d'analyse de sensibilité. On propose ensuite de réduire la dimension d'un problème stochastique quand on traite de champs aléatoires. Les méthodes de décomposition en polynômes du chaos sont ensuite présentées. Cette partie dédiée à la méthodologie s'achève par un chapitre consacré à l'assimilation de données ensemblistes et à l'utilisation des modèles réduits dans ce cadre. La quatrième partie de ce manuscrit est dédiée aux résultats. On commence par identifier les sources d'incertitudes en hydraulique que l'on s'attache à quantifier et réduire par la suite. Un article en cours de révision détaille la validation d'un modèle réduit pour les équations de Saint-Venant en régime stationnaire lorsque l'incertitude est majoritairement portée par les coefficients de frottement et le débit à l'amont. On montre que les moments statistiques, la densité de probabilité et la matrice de covariances spatiales pour la hauteur d'eau sont efficacement et précisément estimés à l'aide du modèle réduit dont la construction ne nécessite que quelques dizaines d'intégrations du modèle direct. On met à profit l'utilisation du modèle réduit pour réduire le coût de calcul du filtre de Kalman d'Ensemble dans le cadre d'un exercice d'assimilation de données synthétiques de type SWOT. On s'intéresse précisément à la représentation spatiale de la donnée telle que vue par SWOT: couverture globale du réseau, moyennage spatial entre les pixels observés. On montre notamment qu'à budget de calcul donné les résultats de l'analyse d'assimilation de données qui repose sur l'utilisation du modèle réduit sont meilleurs que ceux obtenus avec le filtre classique. On s'intéresse enfin à la construction du modèle réduit en régime instationnaire. On suppose ici que l'incertitude est liée aux coefficients de frottement. Il s'agit à présent de juger de la nécessité du recalcul des coefficients polynomiaux au fil du temps et des cycles d'assimilation de données. Pour ce travail seul des données in-situ ont été considérées. On suppose dans un deuxième temps que l'incertitude est portée par le débit en amont du réseau, qui est un vecteur temporel. On procède à une décomposition de type Karhunen-Loève pour réduire la taille de l'espace incertain aux trois premiers modes. Nous sommes ainsi en mesure de mener à bien un exercice d'assimilation de données. Pour finir, les conclusions et les perspectives de ce travail sont présentées en cinquième partie.
13

Utilisation des déformations spatiales en assimilation de données / Use of spatial deformation in data assimilation

Legrand, Raphaël 10 December 2015 (has links)
L'assimilation de données permet de construire un état initial du modèle (l'analyse) à partir de deux sources d'information : les observations disponibles et une prévision récente (l'ébauche). L'importance relative de chacune des sources dépend du modèle d'erreurs qui leur est attribué. Le modèle le plus commun en prévision numérique du temps (PNT) consiste à formuler l'erreur d'ébauche comme un incrément additif en amplitude et, avec une approche probabiliste, de spécifier sa fonction de densité de probabilité (PDF) par une Gaussienne spécifiée avec une moyenne nulle et une matrice de covariance B. Le premier problème abordé durant cette thèse est le manque de dépendance au flux des modélisations de B. Le deuxième est l'écartement à l'hypothèse Gaussienne notamment en présence d'erreurs de déplacement. La démarche suivie est d'utiliser des déformations spatiales dans un cadre ensembliste pour raffiner la modélisation des corrélations d'erreurs d'ébauche, et de corriger les erreurs de déplacement pour tenter de se rapprocher de l'hypothèse Gaussienne. La première partie du travail de thèse consiste à améliorer la modélisation de B, en prenant en compte objectivement l'anisotropie des corrélations d'erreurs d'ébauche à l'aide de déformations spatiales estimées statistiquement à partir d'un ensemble de prévisions générées avec un ensemble d'assimilation (EDA). Cette méthode statistique (ST) est appliquée à une simulation réelle du modèle global de Météo-France ARPEGE, et son efficacité est comparée à celle de la transformée géostrophique (GT) à l'aide de diagnostics d'anisotropie. Les résultats montrent que la ST est plus efficace que la GT avec une prise en compte plus systématique de l'anisotropie des corrélations spatiales. Dans une deuxième partie, une documentation de la non-Gaussianité (NG) des erreurs d'ébauche d'AROME, le modèle à échelle convective de Météo-France, est proposée. La NG des distributions d'erreurs d'ébauche, diagnostiquées à partir d'un EDA, est quantifiée par un indice uniquement basé sur leur asymétrie et leur aplatissement. La NG diagnostiquée a une forte dépendance spatiale et temporelle, avec des structures spatiales qui suivent les structures météorologiques. Le lien avec certains processus non-linéaires , liés par exemple à la présence de nuages, est notamment observé. Les diagnostics montrent également que le processus d'analyse réduit fortement la NG observée dans l'ébauche, et que la vorticité et la divergence sont les variables de contrôle de l'assimilation les moins Gaussiennes. Une des causes possibles de la NG étant la présence d'erreurs de déplacement, la troisième partie de ce travail de thèse s'attache à documenter les apports de ce modèle d'erreurs alternatif. Un algorithme d'estimation des erreurs de déplacements a tout d'abord été mis en place. Cet algorithme, qui s'inspire des méthodes d'estimation du flot optique, se base sur une approche variationnelle quasi-linéaire, quasi Gaussienne et multi-échelles. Le comportement de la méthode a été testé sur des cas idéalisés, puis sur des cas réels basés sur des prévisions AROME. Ceci permet d'envisager à l'avenir l'estimation statistique des principaux paramètres caractérisants ce type d' erreurs, ainsi que leur exploitation dans des algorithmes visant à corriger ces erreurs en amont de la correction d'amplitude. / Data assimilation provides initial conditions (the analysis) for the model from two sources of information: the available observations and a short term forecast (the background). The relative weights of both sources depend on the chosen error model. Usually, background errors are modeled as additive amplitude errors and, following a probabilistic approach, their probability density function (PDF) are modeled as Gaussians, specified with a zero mean and a covariance matrix B. For this PhD, the tackled issue are the lack of flow dependency of B and the non-Gaussianity (NG) frequently arising in numerical weather prediction (NWP), especially in case of displacement error. Using spatial deformation methods and ensemble of forecasts generated from an ensemble of data (EDA), the aim of this work is to refine the model of background error correlations, and to correct displacement errors as a possible way to get closer to the Gaussian hypothesis. A first part of this work is to improve the B modeling, by accounting objectively for the anisotropy of the background error correlations thanks to spatial deformation, which is statistically estimated from an EDA. This statistical method (ST) is applied to a real dataset of ARPEGE, the global model at Météo-France. The ST is compared to an other spatial warping method, the geostrophic transform (GT), and their efficiency are quantified by an anisotropy index. Results show a better efficiency of the ST than the GT, with a more systematic accounting of the anisotropy of the spatial background correlations. The second part of this work is a documentation of the NG for the background errors of AROME, the convective scale model at Météo-France. Distributions are diagnosed from an EDA, and their Gaussianity is quantified with a statistical index only based on two shape parameters, skewness and kurtosis. The diagnosed NG is spatially and temporally dependent, with large similarities between meteorological and NG structures. Links with nonlinear processes, linked for example to cloud covering, are observed. Diagnostics also show that the analysis step is largely decreasing the observed NG of the background, and that the most non-Gaussian variables in control space are vorticity and divergence. Since, a possible reason of the NG is the displacement errors, the third part of this PhD work aims at getting insight in the documentation of this alternative error model. First, a quasi-linear, quasi-Gaussian and multi-scale method, inspired from optical flow estimation methods, is derived. It has been tested on ideal case and on real cases based on AROME forecast fields. Future works may be, first, a statistical estimation of the main parameters characterizing this kind of error, and second, the use of this algorithm to correct displacement error upstream of the additive error correction.
14

Assimilation des observations satellitaires de l'interféromètre atmosphérique de sondage infrarouge (IASI) dans un modèle de chimie-transport pour des réanalyses d'ozone à l'échelle globale / Satellites data assimilation of the infrared atmospheric sounding interferometer (IASI) in a chemistry transport model for ozone reanalyses at global scale

Peiro, Hélène 12 January 2018 (has links)
L'impact sur le climat et sur la qualité de l'air des gaz émis par les activités humaines a de fortes retombées sociales et économiques. L'ozone (O3) troposphérique est produit à partir des polluants primaires comme les oxydes d'azote. Il est le troisième gaz par importance dans l'effet de serre après le dioxyde de carbone et le méthane, et il est l'un des polluants principaux pour ses effets oxydants sur les tissus organiques. Pour répondre au besoin de mesure continue de la concentration d'O3 plusieurs satellites emportent des sondeurs capables de mesurer leur signal dans les domaines ultra-violet, visible ou infrarouge du rayonnement terrestre. Le CNES développe notamment le sondeur infrarouge IASI à bord des satellites météorologiques polaires METOP. IASI, en orbite depuis de nombreuses années, permet d'estimer la concentration de certains gaz atmosphériques, notamment l'O3, avec une couverture spatio-temporelle jamais atteinte jusqu'à présent. Chaque jour IASI mesure le spectre infrarouge de l'atmosphère entre 650 et 2700 nm avec une résolution horizontale de 12 km, ce qui fait un volume de données géolocalisées de plusieurs dizaines de gigaoctets par jour. Ces observations constituent un jeu de données idéal pour la validation des modèles de chimie-transport (CTM) à la base des systèmes de surveillance et de prévision de la qualité de l'air. Ces modèles peuvent prendre en compte les observations satellitaires par une procédure mathématique appelée 'assimilation de données'. Cette technique permet de compléter l'information parfois parcellaire des satellites (par exemple à cause de la présence des nuages ou durant la nuit pour les capteurs UV-visible) et d'obtenir des champs 3D globaux des concentrations de certaines espèces chimiques avec une fréquence horaire. Dans ce contexte, il est très important de développer des algorithmes fiables et efficaces pour assimiler les données IASI dans les CTM. A cette fin, l'UMR/CECI (CERFACS) développe en collaboration avec le CNRM/Météo-France un outil d'assimilation (VALENTINA) pour le CTM MOCAGE ayant des applications à l'échelle globale ou régionale pour l'étude du climat ou de la qualité de l'air, notamment dans le cadre du projet européen Copernicus sur la composition de l'atmosphère (CAMS). Il collabore également avec le Laboratoire d'Aérologie, qui développe depuis plusieurs années l'algorithme SOFRID de restitution des profils verticaux d' O3 IASI basé sur le code de transfert radiatif RTTOV. Le travail de cette thèse concerne la mise au point et la production d'analyses d' O3 troposphérique tridimensionnelles par l'assimilation d'observations satellitaires (MLS, IASI) dans le CTM MOCAGE. L'objectif principal est de constituer une nouvelle base de données pour l'étude de la variabilité de l'ozone de l'échelle journalière à celle décennale. On démontre ainsi la capacité des analyses utilisant les données IASI à reproduire la réponse de l' O3 troposphérique à l'ENSO (El Niño Southern Oscillation) aux basses latitudes, apportant notamment des informations nouvelles sur la distribution verticale des anomalies associées. Une large part de ce travail a de plus consisté à analyser les biais entre les analyses et les données de sondages indépendantes. Une des raisons expliquant ces biais pourrait être l'utilisation d'a-priori et de covariances d'erreurs climatologiques fortement biaisés (notamment au niveau de la tropopause) dans la procédure d'inversion des produits d' O3 de IASI. Une seconde partie de la thèse a donc consisté à mettre en place une méthode permettant de prescrire des a-priori plus proches des situations réelles améliorant ainsi les profils d' O3 restitués. En conclusion cette thèse constitue une avancée significative vers l'amélioration des produits d' O3 troposphérique issus de l'instrument IASI, permettant d'envisager un suivi à long terme que le caractère opérationnel des satellites METOP facilitera. / Human activity produces gases impacting the climate and the air quality with important economic and social consequences. Tropospheric ozone (O3) is created by chemical reactions from primary pollutants as nitrogen oxides. O3 is the third most important greenhouse gas after carbon dioxide and methane. It is one of the most important pollutants due to its oxidant effects on biological tissue. Several sensors on board satellites measure ozone concentration in the Ultraviolet, visible, or in the Earth infrared radiance. The French national center for space studies CNES (Centre National d'Etudes Spatiales) has developed the infrared sounding IASI on board polar meteorological satellites METOP. IASI, in orbit for several years, has allowed to estimate concentration of atmospheric gases, particularly O3, with a spatio-temporal coverage never reached so far. Every day, IASI measures infrared spectrum of the atmosphere between 650 to 2700 nm with an horizontal resolution of 12 km, giving tens of Gigaoctet per day of geolocated data. These observations form a part of an ideal set of data for the Chemistry Transport Model (CTM). CTM are used to analyze and predict air quality and can take into account satellite data according to a mathematical procedure called 'data assimilation'. This technic allows to fill gaps in the satellite information (for instance due to clouds or during night for the UV-visible sensor) and to obtain 3D global fields of chemical species concentration on an hourly basis. Therefore, it is important to develop accurate and efficient algorithms to assimilate IASI data in the CTM's. To this end, the UMR/CECI (CERFACS) develops in collaboration with the CNRM/Météo-France an assimilation tool (named VALENTINA) to the CTM MOCAGE that has applications on global and regional scales for climate or air quality study. The CTM MOCAGE is part of the European Copernicus project on the atmospheric composition (CAMS). In addition, the UMR/CECI collaborates with the Laboratoire d'Aérologie that has developed for several years the SOFRID algorithm for the vertical profiles retrieval of IASI ozone data based on the radiative transfer code RTTOV. The study of this PhD includes the tridimensional production of tropospheric ozone analysis with data assimilation (MLS, IASI) in the CTM MOCAGE, and on the ozone variability. Hence, we demonstrate the analysis ability to reproduce tropospheric ozone in response to ENSO, by bringing new informations on the vertical structure of associated anomalies. The PhD also focuses on the study of biases between analyses and independent ozone soundings. One of the main reasons could be due to the use of the climatological a-priori and matrix error covariance associated, strongly biased (particularly around the tropopause) in the retrieval method of IASI ozone data. Therefore, the second part of the PhD has consisted implementation of a method that generates accurate a-priori to improve retrieved ozone profiles. As a conclusion, this PhD brings a significant progress towards the improvement of tropospheric ozone products from IASI instrument, that should contribute to the long-term monitoring of tropospheric ozone thanks to the operational nature of METOP satellites.
15

Estimation de l'équivalent en eau de la neige en milieu subarctique du Québec par télédétection micro-ondes passives

Vachon, François January 2009 (has links)
The snow cover (extent, depth and water equivalent) is an important factor in assessing the water balance of a territory. In a context of deregulation of electricity, better knowledge of the quantity of water resulting from snowmelt that will be available for hydroelectric power generation has become a major challenge for the managers of Hydro-Québec's generating plant. In fact, the snow on the ground represents nearly one third of Hydro-Québec's annual energy reserve and the proportion is even higher for northern watersheds. Snowcover knowledge would therefore help optimize the management of energy stocks.The issue is especially important when one considers that better management of water resources can lead to substantial economic benefits.The Research Institute of Hydro-Quebec (IREQ), our research partner, is currently attempting to optimize the streamflow forecasts made by its hydrological models by improving the quality of the inputs. These include a parameter known as the snow water equivalent (SWE) which characterizes the properties of the snow cover. At the present time, SWE data is obtained from in situ measurements, which are both sporadic and scattered and does not allow the temporal and spatial variability of SWE to be characterized adequately for the needs of hydrological models. This research project proposes to provide the Québec utility's hydrological models with distributed SWE information about its northern watersheds.The targeted accuracy is 15% for the proposed period of analysis covering the winter months of January, February and March of 2001 to 2006.The methodology is based on the HUT snow emission model and uses the passive microwave remote sensing data acquired by the SSM/I sensor. Monitoring of the temporal and spatial variations in SWE is done by inversion of the model and benefits from the assimilation of in situ data to characterize the state of snow cover during the season. Experimental results show that the assimilation technique of in situ data (density and depth) can reproduce the temporal variations in SWE with a RMSE error of 15.9% (R[subscript 2] =0.76).The analysis of land cover within the SSMI pixels can reduce this error to 14.6% (R[subscript 2] =0.66) for SWE values below 300 mm. Moreover, the results show that the fluctuations of SWE values are driven by changes in snow depths. Indeed, the use of a constant value for the density of snow is feasible and makes it possible to get as good if not better results. These results will allow IREQ to assess the suitability of using snow cover information provided by the remote sensing data in its forecasting models. This improvement in SWE characterization will meet the needs of IREQ for its work on optimization of the quality of hydrological simulations.The originality and relevance of this work are based primarily on the type of method used to quantify SWE and the site where it is applied.The proposed method focuses on the inversion of the HUT model from passive remote sensing data and assimilates in situ data. Moreover, this approach allows high SWE values (> 300 mm) to be quantified, which was impossible with previous methods. These high SWE values are encountered in areas with large amounts of snow such as northern Québec.
16

Assimilation de données de télédétection pour le suivi des surfaces continentales : Mise en oeuvre sur un site expérimental

Muñoz Sabater, Joaquín 13 April 2007 (has links) (PDF)
Le travail réalisé dans le cadre de cette thèse porte sur l'assimilation de données de télédétection pour le suivi des surfaces continentales. Les variables analysées sont l'état hydrique du sol et la biomasse de la végétation, sur la jachère du site expérimental SMOSREX, de 2001 à 2004, au sud-ouest de Toulouse. Quatre méthodes d'assimilation (EKF, EnKF, 1D-VAR et T-VAR) ont été mises en œuvre dans le modèle ISBA-A-gs de Météo-France, et comparées. La méthode 1D-VAR est la plus performante, aussi bien pour la qualité des analyses qu'en temps de calcul. Cette méthode a été appliquée à l'assimilation simultanée des observations de l'humidité de la surface et de l'indice foliaire, ainsi qu'aux mesures de télédétection réalisées sur le site. L'assimilation améliore la simulation de contrôle, à condition d'introduire un point de flétrissement dynamique (cela est particulièrement utile pendant les périodes de forte sécheresse). Les effets d'une incertitude sur les précipitations sont évalués.
17

Assimilation variationnelle d'observations multi-échelles : Application à la fusion de données hétérogènes pour l'étude de la dynamique micro et macrophysique des systèmes précipitants / Variationnal assimilation of multi-scale observations : fusion of heterogeneous data for the study of dynamics of rainfall at macro and microscopic scales

Mercier, Francois 05 July 2016 (has links)
D’une part, les instruments permettant de mesurer les précipitations (pluviomètres, radars, etc.) effectuent des mesures de natures différentes et à différentes échelles. Leurs données sont difficilement comparables. D’autre part, les modèles décrivant l’évolution des précipitations sont eux complexes et difficiles à paramétrer et à valider. Dans cette thèse, nous utilisons l’assimilation de données afin de coupler des observations hétérogènes des précipitations et des modèles, pour étudier les précipitations et leur variabilité spatiotemporelle à différentes échelles (macrophysique, qui s’intéresse aux cellules de pluie, et microphysique, qui s’intéresse à la distribution en taille des gouttes – DSD – qui les composent). Tout d’abord, nous développons un algorithme permettant de restituer des cartes de précipitations à partir de mesures de l’atténuation causée par la pluie à des ondes provenant de satellites de télévision. Nos restitutions sont validées par rapport à des données radar et pluviomètres sur un cas d’étude dans le sud de la France. Ensuite, nous restituons, toujours par assimilation de données, des profils verticaux de DSD et de vents verticaux à partir de mesures de flux de gouttes au sol (par disdromètres) et de spectres Doppler en altitude (par radar). Nous utilisons ces restitutions sur 3 cas d’étude pour étudier les phénomènes physiques agissant sur les gouttes de pluie durant leur chute et pour évaluer la paramétrisation de ces phénomènes dans les modèles. / On the one hand, the instruments designed to measure rainfall (rain gages, radars, etc.) perform measurements at different scales and of different natures. Their data are hard to compare. On the other hand, models simulating the evolution of rainfall are complex. It is not an easy task to parameterize and to validate them. In this thesis, we use data assimilation in order to couple heterogeneous observations of rainfall and models for studying rain and its spatiotemporal variability at different scales (macrophysical scale, which is interested in rain cells, as well as microphysical scale, which is interested in the drop size distribution – DSD). First, we develop an algorithm able to retrieve rain maps from measurements of attenuation of waves coming from TV satellites due to rainfall. Our retrievals are validated by comparison with radar and rain gages data for a case study in south of France. Second, we retrieve – again with data assimilation – vertical profiles of DSD and vertical winds from measurements of rain drop fluxes on the ground (using a disdrometer) and of Doppler spectra aloft (using a radar). We use these retrievals for 3 case studies to study the physical phenomena acting on rain drops during their fall and to evaluate the parameterization of these phenomena in models.
18

Modélisation du zooplancton et du micronecton marins / Modeling marine zooplankton and micronekton

Conchon, Anna 20 June 2016 (has links)
Le zooplancton et le micronecton sont les deux premiers échelons animaux de la chaine trophique marine. Bien que de tailles très différentes (200μm à 2mm pour le zooplancton, 2 à 20cm pour le micronecton), ces deux groupes d'espèces variées partagent un comportement singulier : les migrations nycthémérales. Ces migrations journalières entre la profondeur de jour et la surface de nuit induisent des flux de matière organique très importants entre les différentes profondeurs de l'océan. L'étude des cycles biogéochimiques océaniques a une grande importance pour l'étude du changement climatique. Cette étude est notamment conduite à travers le développement de modèles globaux de circulation océanique et de biogéochimie. La suite logique de ces développements est donc la modélisation du zooplancton et du micronecton. La gamme de modèles SEAPODYM modélise avec parcimonie la chaine trophique depuis le zooplancton jusqu'aux prédateurs supérieurs à l'aide de trois modèles. Cette thèse présente le modèle de biomasse de zooplancton SEAPODYM-LTL (pour lower trophic level, niveau trophique bas), ainsi qu'une analyse de sa sensibilité aux forçages. En effet, la particularité de ces modèles est leur forçage offline par des champs de courants, température et production primaire produits par d'autres modèles. Le modèle SEAPODYM-LTL est également comparé au modèle PISCES (NPZD), et présente des performances similaires à ce dernier dans le cas testé. Afin d'améliorer les prédictions du modèle SEAPODYM-MTL (mid-trophic level, i.e. le modèle de biomasse de micronecton), une méthodologie d'assimilation de données a été mise en place pour affiner la paramétrisation utilisée. Des données d'acoustique active (38kHz) sont donc utilisées pour enrichir le modèle. Cette méthodologie a été conçue autour d'un cas test présenté dans cette thèse. L'extension du jeu de données acoustiques assimilées au modèle a permis de mettre en évidence le besoin de mieux modéliser les profondeurs des couches verticales de SEAPODYM. Cela a été réalisé à l'aide du jeu de données acoustiques évoqué précédemment. Cette étude est également présentée dans cette thèse. / Zooplankton and micronecton are the first marine trophic levels. Different by their size (200μm to 2mm for zooplankton, 2 to 20cm for micronekton), this two groups undergo diel vertical migration from depth by day to the surface during the night. These migrations create major organic matter fluxes between the deep ocean and the surface. Biogeochemical cycles are of great importance for climate change studies. These studies are conducted with ocean global circulation model and biogeochemical model. The way to go is develop low and mid-trophic level modelling approaches. SEAPODYM ensemble of models are three parsimonious model of biomass at diverse level of the trophic chain, from zooplankton to top predators. This thesis introduce the zooplankton biomass model SEAPODYM-LTL (lower trophic level) and a forcing fields sensitivity analysis. Indeed, these model are forced off line by currents, temperature and primary production fields produced by other models. SEAPODYM-LTL has also been compared to PISCES (NPZD) and both have similar performance score in this study. In order to improve SEAPODYM-MTL (mid trophic level) predictions, a data assimilation framework has been developed to find a better parameterisation. 38kHz active acoustic data have been used to improve the model. This methodology has been develop thanks to a test case that we present in this thesis. The gathered acoustic dataset permitted to show the need of a better definition of vertical layer depths. It has been developed using the acoustic dataset. The related study is presented in this thesis.
19

Turbulent complex flows reconstruction via data assimilation in large eddy models / Reconstruction d’écoulements turbulents complexes par assimilation de données images dans des modèles grandes échelles

Chandramouli, Pranav 19 October 2018 (has links)
L'assimilation de données en tant qu'outil pour la mécanique des fluides a connu une croissance exponentielle au cours des dernières décennies. La possibilité de combiner des mesures précises mais partielles avec un modèle dynamique complet est précieuse et a de nombreuses applications dans des domaines allant de l'aérodynamique, à la géophysique et à l’aéraulique. Cependant, son utilité reste limitée en raison des contraintes imposées par l'assimilation de données notamment en termes de puissance de calcul, de besoins en mémoire et en informations préalables. Cette thèse tente de remédier aux différentes limites de la procédure d'assimilation pour faciliter plus largement son utilisation en mécanique des fluides. Un obstacle majeur à l'assimilation des données est un coût de calcul prohibitif pour les écoulements complexes. Une modélisation de la turbulence à grande échelle est intégrée à la procédure d'assimilation afin de réduire considérablement la coût de calcul et le temps requis. La nécessité d'une information volumétrique préalable pour l'assimilation est abordée à l'aide d'une nouvelle méthodologie de reconstruction développée et évaluée dans cette thèse. L'algorithme d'optimisation reconstruit les champs 3D à partir d'observations dans deux plans orthogonaux en exploitant l'homogénéité directionnelle. La méthode et ses variantes fonctionnent bien avec des ensembles de données synthétiques et expérimentaux fournissant des reconstructions précises. La méthodologie de reconstruction permet également d’estimer la matrice de covariance d’ébauche indispensable à un algorithme d’assimilation efficace. Tous les ingrédients sont combinés pour effectuer avec succès l'assimilation de données variationnelles d'un écoulement turbulent dans le sillage d'un cylindre à un nombre de Reynolds transitoire. L'algorithme d'assimilation est validé pour des observations volumétriques synthétiques et est évalué sur des observations expérimentales dans deux plans orthogonaux. / Data assimilation as a tool for fluid mechanics has grown exponentially over the last few decades. The ability to combine accurate but partial measurements with a complete dynamical model is invaluable and has numerous applications to fields ranging from aerodynamics, geophysics, and internal ventilation. However, its utility remains limited due to the restrictive requirements for performing data assimilation in the form of computing power, memory, and prior information. This thesis attempts at redressing various limitations of the assimilation procedure in order to facilitate its wider use in fluid mechanics. A major roadblock for data assimilation is the computational cost which is restrictive for all but the simplest of flows. Following along the lines of Joseph Smagorinsky, turbulence modelling through large-eddy simulation is incorporated in to the assimilation procedure to significantly reduce computing power and time required. The requirement for prior volumetric information for assimilation is tackled using a novel reconstruction methodology developed and assessed in this thesis. The snapshot optimisation algorithm reconstructs 3D fields from 2D cross- planar observations by exploiting directional homogeneity. The method and its variants work well with synthetic and experimental data-sets providing accurate reconstructions. The reconstruction methodology also provides the means to estimate the background covariance matrix which is essential for an efficient assimilation algorithm. All the ingredients are combined to perform variational data assimilation of a turbulent wake flow around a cylinder successfully at a transitional Reynolds number. The assimilation algorithm is validated with synthetic volumetric observation and assessed on 2D cross-planar observations emulating experimental data.
20

Dispersion atmosphérique et modélisation inverse pour la reconstruction de sources accidentelles de polluants / Atmospheric dispersion and inverse modelling for the reconstruction of accidental sources of pollutants

Winiarek, Victor 04 March 2014 (has links)
Les circonstances pouvant conduire à un rejet incontrôlé de polluants dans l'atmosphère sont variées : il peut s'agir de situations accidentelles, par exemples des fuites ou explosions sur un site industriel, ou encore de menaces terroristes : bombe sale, bombe biologique, notamment en milieu urbain. Face à de telles situations, les objectifs des autorités sont multiples : prévoir les zones impactées à court terme, notamment pour évacuer les populations concernées ; localiser la source pour pouvoir intervenir directement sur celle-ci ; enfin déterminer les zones polluées à plus long terme, par exemple par le dépôt de polluants persistants, et soumises à restriction de résidence ou d'utilisation agricole. Pour atteindre ces objectifs, des modèles numériques peuvent être utilisés pour modéliser la dispersion atmosphérique des polluants. Après avoir rappelé les processus physiques qui régissent le transport de polluants dans l'atmosphère, nous présenterons les différents modèles à disposition. Le choix de l'un ou l'autre de ces modèles dépend de l'échelle d'étude et du niveau de détails (topographiques notamment) désiré. Nous présentons ensuite le cadre général (bayésien) de la modélisation inverse pour l'estimation de sources. Le principe est l'équilibre entre des informations a priori et des nouvelles informations apportées par des observations et le modèle numérique. Nous mettons en évidence la forte dépendance de l'estimation du terme source et de son incertitude aux hypothèses réalisées sur les statistiques des erreurs a priori. Pour cette raison nous proposons plusieurs méthodes pour estimer rigoureusement ces statistiques. Ces méthodes sont appliquées sur des exemples concrets : tout d'abord un algorithme semi-automatique est proposé pour la surveillance opérationnelle d'un parc de centrales nucléaires. Un second cas d'étude est la reconstruction des termes sources de césium-137 et d'iode-131 consécutifs à l'accident de la centrale nucléaire de Fukushima Daiichi. En ce qui concerne la localisation d'une source inconnue, deux stratégies sont envisageables : les méthodes dites paramétriques et les méthodes non-paramétriques. Les méthodes paramétriques s'appuient sur le caractère particulier des situations accidentelles dans lesquelles les émissions de polluants sont généralement d'étendue limitée. La source à reconstruire est alors paramétrisée et le problème inverse consiste à estimer ces paramètres, en nombre réduit. Dans les méthodes non-paramétriques, aucune hypothèse sur la nature de la source (ponctuelle, localisée, ...) n'est réalisée et le système cherche à reconstruire un champs d'émission complet (en 4 dimensions). Plusieurs méthodes sont proposées et testées sur des situations réelles à l'échelle urbaine avec prise en compte des bâtiments, pour lesquelles les méthodes que nous proposons parviennent à localiser la source à quelques mètres près, suivant les situations modélisées et les méthodes inverses utilisées / Uncontrolled releases of pollutant in the atmosphere may be the consequence of various situations : accidents, for instance leaks or explosions in an industrial plant, or terrorist attacks such as biological bombs, especially in urban areas. In the event of such situations, authorities' objectives are various : predict the contaminated zones to apply first countermeasures such as evacuation of concerned population ; determine the source location ; assess the long-term polluted areas, for instance by deposition of persistent pollutants in the soil. To achieve these objectives, numerical models can be used to model the atmospheric dispersion of pollutants. We will first present the different processes that govern the transport of pollutants in the atmosphere, then the different numerical models that are commonly used in this context. The choice between these models mainly depends of the scale and the details one seeks to take into account.We will then present the general framework of inverse modeling for the estimation of source. Inverse modeling techniques make an objective balance between prior information and new information contained in the observation and the model. We will show the strong dependency of the source term estimation and its uncertainty towards the assumptions made on the statistics of the prior errors in the system. We propose several methods to estimate rigorously these statistics. We will apply these methods on different cases, using either synthetic or real data : first, a semi-automatic algorithm is proposed for the operational monitoring of nuclear facilities. The second and third studies concern the source term estimation of the accidental releases from the Fukushima Daiichi nuclear power plant. Concerning the localization of an unknown source of pollutant, two strategies can be considered. On one hand parametric methods use a limited number of parameters to characterize the source term to be reconstructed. To do so, strong assumptions are made on the nature of the source. The inverse problem is hence to estimate these parameters. On the other hand non-parametric methods attempt to reconstruct a full emission field. Several parametric and non-parametric methods are proposed and evaluated on real situations at a urban scale, with a CFD model taking into account buildings influence on the air flow. In these experiments, some proposed methods are able to localize the source with a mean error of some meters, depending on the simulated situations and the inverse modeling methods

Page generated in 0.1321 seconds