• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 47
  • 24
  • 8
  • 5
  • 5
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 173
  • 173
  • 115
  • 114
  • 41
  • 40
  • 34
  • 29
  • 28
  • 27
  • 25
  • 25
  • 22
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
111

Fuzzy Association Rule Mining From Spatio-temporal Data: An Analysis Of Meteorological Data In Turkey

Unal Calargun, Seda 01 January 2008 (has links) (PDF)
Data mining is the extraction of interesting non-trivial, implicit, previously unknown and potentially useful information or patterns from data in large databases. Association rule mining is a data mining method that seeks to discover associations among transactions encoded within a database. Data mining on spatio-temporal data takes into consideration the dynamics of spatially extended systems for which large amounts of spatial data exist, given that all real world spatial data exists in some temporal context. We need fuzzy sets in mining association rules from spatio-temporal databases since fuzzy sets handle the numerical data better by softening the sharp boundaries of data which models the uncertainty embedded in the meaning of data. In this thesis, fuzzy association rule mining is performed on spatio-temporal data using data cubes and Apriori algorithm. A methodology is developed for fuzzy spatio-temporal data cube construction. Besides the performance criteria interpretability, precision, utility, novelty, direct-to-the-point and visualization are defined to be the metrics for the comparison of association rule mining techniques. Fuzzy association rule mining using spatio-temporal data cubes and Apriori algorithm performed within the scope of this thesis are compared using these metrics. Real meteorological data (precipitation and temperature) for Turkey recorded between 1970 and 2007 are analyzed using data cube and Apriori algorithm in order to generate the fuzzy association rules.
112

NCAA academic eligibility standards for competition in Division III

Winkler, Chris Charles 15 October 2012 (has links)
In NCAA Division I, academic eligibility standards are national in scope and are the same for all institutions. In NCAA Division III, there are no national standards; rather each member institution establishes its own academic eligibility standards. However, information on these standards has never been collected and published, leaving a significant hole in the research in this area. The problem addressed by this study was to collect this academic eligibility information on the members of one Division III conference. A number of questions were addressed in the study. One was, how do Division III eligibility standards compare to Division I standards? Another was, how do eligibility standards in the Division III institutions studied compare to each other? Since differences were found, a final question addressed was, do the differences in academic eligibility standards between the Division III institutions lead to competitive equity issues. Data on academic eligibility standards from 15 members of one Division III conference were collected through interviews of Compliance Officers at each institution. The data were compared to the NCAA national standards for Division I. The data were also analyzed for differences among the Division III institutions studied. A correlation analysis was used to determine if a relationship existed between academic eligibility standards and competitive equity. The findings of the study were that on most of the academic eligibility variables, the Division III institutions studied had lower standards than the national standards for Division I. In the comparison of Division III institutions to each other, differences were found for high school core course requirements, transfer and continuing student credit hour requirements, and exceptions to the rules. While the study found pronounced differences in competitive equity among the Division III institutions studied, there was no clear indication of any relationship between eligibility requirements and competitive equity. This study provided some interesting information about the institutions in one Division III conference. However, the study raised as many questions as it answered. More work needs to be done to determine whether the policies followed by NCAA Division III institutions are truly different from those followed by Division I institutions. / text
113

Text mining : μια νέα προτεινόμενη μέθοδος με χρήση κανόνων συσχέτισης

Νασίκας, Ιωάννης 14 September 2007 (has links)
Η εξόρυξη κειμένου (text mining) είναι ένας νέος ερευνητικός τομέας που προσπαθεί να επιλύσει το πρόβλημα της υπερφόρτωσης πληροφοριών με τη χρησιμοποίηση των τεχνικών από την εξόρυξη από δεδομένα (data mining), την μηχανική μάθηση (machine learning), την επεξεργασία φυσικής γλώσσας (natural language processing), την ανάκτηση πληροφορίας (information retrieval), την εξαγωγή πληροφορίας (information extraction) και τη διαχείριση γνώσης (knowledge management). Στο πρώτο μέρος αυτής της διπλωματικής εργασίας αναφερόμαστε αναλυτικά στον καινούριο αυτό ερευνητικό τομέα, διαχωρίζοντάς τον από άλλους παρεμφερείς τομείς. Ο κύριος στόχος του text mining είναι να βοηθήσει τους χρήστες να εξαγάγουν πληροφορίες από μεγάλους κειμενικούς πόρους. Δύο από τους σημαντικότερους στόχους είναι η κατηγοριοποίηση και η ομαδοποίηση εγγράφων. Υπάρχει μια αυξανόμενη ανησυχία για την ομαδοποίηση κειμένων λόγω της εκρηκτικής αύξησης του WWW, των ψηφιακών βιβλιοθηκών, των ιατρικών δεδομένων, κ.λ.π.. Τα κρισιμότερα προβλήματα για την ομαδοποίηση εγγράφων είναι η υψηλή διαστατικότητα του κειμένου φυσικής γλώσσας και η επιλογή των χαρακτηριστικών γνωρισμάτων που χρησιμοποιούνται για να αντιπροσωπεύσουν μια περιοχή. Κατά συνέπεια, ένας αυξανόμενος αριθμός ερευνητών έχει επικεντρωθεί στην έρευνα για τη σχετική αποτελεσματικότητα των διάφορων τεχνικών μείωσης διάστασης και της σχέσης μεταξύ των επιλεγμένων χαρακτηριστικών γνωρισμάτων που χρησιμοποιούνται για να αντιπροσωπεύσουν το κείμενο και την ποιότητα της τελικής ομαδοποίησης. Υπάρχουν δύο σημαντικοί τύποι τεχνικών μείωσης διάστασης: οι μέθοδοι «μετασχηματισμού» και οι μέθοδοι «επιλογής». Στο δεύτερο μέρος αυτής τη διπλωματικής εργασίας, παρουσιάζουμε μια καινούρια μέθοδο «επιλογής» που προσπαθεί να αντιμετωπίσει αυτά τα προβλήματα. Η προτεινόμενη μεθοδολογία είναι βασισμένη στους κανόνες συσχέτισης (Association Rule Mining). Παρουσιάζουμε επίσης και αναλύουμε τις εμπειρικές δοκιμές, οι οποίες καταδεικνύουν την απόδοση της προτεινόμενης μεθοδολογίας. Μέσα από τα αποτελέσματα που λάβαμε διαπιστώσαμε ότι η διάσταση μειώθηκε. Όσο όμως προσπαθούσαμε, βάσει της μεθοδολογίας μας, να την μειώσουμε περισσότερο τόσο χανόταν η ακρίβεια στα αποτελέσματα. Έγινε μια προσπάθεια βελτίωσης των αποτελεσμάτων μέσα από μια διαφορετική επιλογή των χαρακτηριστικών γνωρισμάτων. Τέτοιες προσπάθειες συνεχίζονται και σήμερα. Σημαντική επίσης στην ομαδοποίηση των κειμένων είναι και η επιλογή του μέτρου ομοιότητας. Στην παρούσα διπλωματική αναφέρουμε διάφορα τέτοια μέτρα που υπάρχουν στην βιβλιογραφία, ενώ σε σχετική εφαρμογή κάνουμε σύγκριση αυτών. Η εργασία συνολικά αποτελείται από 7 κεφάλαια: Στο πρώτο κεφάλαιο γίνεται μια σύντομη ανασκόπηση σχετικά με το text mining. Στο δεύτερο κεφάλαιο περιγράφονται οι στόχοι, οι μέθοδοι και τα εργαλεία που χρησιμοποιεί η εξόρυξη κειμένου. Στο τρίτο κεφάλαιο παρουσιάζεται ο τρόπος αναπαράστασης των κειμένων, τα διάφορα μέτρα ομοιότητας καθώς και μια εφαρμογή σύγκρισης αυτών. Στο τέταρτο κεφάλαιο αναφέρουμε τις διάφορες μεθόδους μείωσης της διάστασης και στο πέμπτο παρουσιάζουμε την δικιά μας μεθοδολογία για το πρόβλημα. Έπειτα στο έκτο κεφάλαιο εφαρμόζουμε την μεθοδολογία μας σε πειραματικά δεδομένα. Η εργασία κλείνει με τα συμπεράσματα μας και κατευθύνσεις για μελλοντική έρευνα. / Text mining is a new searching field which tries to solve the problem of information overloading by using techniques from data mining, natural language processing, information retrieval, information extraction and knowledge management. At the first part of this diplomatic paper we detailed refer to this new searching field, separated it from all the others relative fields. The main target of text mining is helping users to extract information from big text resources. Two of the most important tasks are document categorization and document clustering. There is an increasing concern in document clustering due to explosive growth of the WWW, digital libraries, technical documentation, medical data, etc. The most critical problems for document clustering are the high dimensionality of the natural language text and the choice of features used to represent a domain. Thus, an increasing number of researchers have concentrated on the investigation of the relative effectiveness of various dimension reduction techniques and of the relationship between the selected features used to represent text and the quality of the final clustering. There are two important types of techniques that reduce dimension: transformation methods and selection methods. At the second part of this diplomatic paper we represent a new selection method trying to tackle these problems. The proposed methodology is based on Association Rule Mining. We also present and analyze empirical tests, which demonstrate the performance of the proposed methodology. Through the results that we obtained we found out that dimension has been reduced. However, the more we have been trying to reduce it, according to methodology, the bigger loss of precision we have been taking. There has been an effort for improving the results through a different feature selection. That kind of efforts are taking place even today. In document clustering is also important the choice of the similarity measure. In this diplomatic paper we refer several of these measures that exist to bibliography and we compare them in relative application. The paper totally has seven chapters. At the first chapter there is a brief review about text mining. At the second chapter we describe the tasks, the methods and the tools are used in text mining. At the third chapter we give the way of document representation, the various similarity measures and an application to compare them. At the fourth chapter we refer different kind of methods that reduce dimensions and at the fifth chapter we represent our own methodology for the problem. After that at the sixth chapter we apply our methodology to experimental data. The paper ends up with our conclusions and directions for future research.
114

Υλοποίηση εφαρμογής εξόρυξης δεδομένων σε αποτελέσματα εντοπισμού της θέσης κινητού χρήστη και αξιοποίηση της πληροφορίας σε M-commerce εφαρμογές

Μεττούρης, Χρίστος 07 November 2008 (has links)
Στην παρούσα διπλωματική υλοποιείται εφαρμογή, η οποία χρησιμοποιεί τεχνικές εξόρυξης δεδομένων σε αποτελέσματα εντοπισμού της θέσης κινητού χρήστη για παραγωγή πληροφορίας σε μορφή κανόνων συσχέτισης, ενώ παράλληλα γίνεται αξιοποίηση των αποτελεσμάτων εντοπισμού της θέσης σε M-commerce εφαρμογές. Η εφαρμογή υλοποιήθηκε για χρήση της σε μια υπεραγορά, στην οποία οι πελάτες θα ανιχνεύονται στα διάφορα τμήματά της, κατά την πραγματοποίηση των αγορών τους. Από τα αποτελέσματα εντοπισμού της θέσης του χρήστη, παράγονται κανόνες συσχέτισης, οι οποίοι αφορούν τις ανιχνεύσεις των πελατών στα τμήματα αυτά. Επίσης παρουσιάζεται η πορεία των χρηστών στην υπεραγορά, ενώ τελικά αποστέλονται σε αυτούς M-commerce σχετικά μηνύματα. / In this thesis, we present an application that utilizes Data Mining techniques on data collected by a user positioning application, to extract useful information in the form of association Rules. Furthermore, user positioning results are being used for M-commerce purposes. The application is developed to be used by a supermarket, in which all customers are detected, so that their location becomes known. By using the positioning results, association rules are extracted. Apart from the extraction of association rules, the application presents each customer’s route in the supermarket. Finally, M-commerce related messages are being sent to the customers, according to their preferences, concerning the areas of the supermarket.
115

Association rules search in large data bases / Susietumo taisyklių paieška didelėse duomenų bazėse

Savulionienė, Loreta 19 May 2014 (has links)
The impact of information technology is an integral part of modern life. Any activity is related to information and data accumulation and storage, therefore, quick analysis of information is necessary. Today, the traditional data processing and data reports are no longer sufficient. The need of generating new information and knowledge from given data is understandable; therefore, new facts and knowledge, which allow us to forecast customer behaviour or financial transactions, diagnose diseases, etc., can be generated applying data mining techniques. The doctoral dissertation analyses modern data mining algorithms for estimating frequent sub-sequences and association rules. The dissertation proposes a new stochastic algorithm for mining frequent sub-sequences, its modifications SDPA1 and SDPA2 and stochastic algorithm for discovery of association rules, and presents the evaluation of the algorithm errors. These algorithms are approximate, but allow us to combine two important tests, i.e. time and accuracy. The algorithms have been tested using real and simulated databases. / Informacinių technologijų įtaka neatsiejama nuo šiuolaikinio gyvenimo. Bet kokia veiklos sritis yra susijusi su informacijos, duomenų kaupimu, saugojimu. Šiandien nebepakanka tradicinio duomenų apdorojimo bei įvairių ataskaitų formavimo. Duomenų tyrybos technologijų taikymas leidžia iš turimų duomenų išgauti naujus faktus ar žinias, kurios leidžia prognozuoti veiklą, pavyzdžiui, pirkėjų elgesį ar finansines tendencijas, diagnozuoti ligas ir pan. Disertacijoje nagrinėjami duomenų tyrybos algoritmai dažniems posekiams ir susietumo taisyklėms nustatyti. Disertacijoje sukurtas naujas stochastinis dažnų posekių paieškos algoritmas, jo modifikacijos SDPA1, SDPA2 ir stochastinis susietumo taisyklių nustatymo algoritmas bei pateiktas šių algoritmų paklaidų įvertinimas. Šie algoritmai yra apytiksliai, tačiau leidžia suderinti du svarbius kriterijus  laiką ir tikslumą. Šie algoritmai buvo testuojami naudojant realias bei imitacines duomenų bazes.
116

Susietumo taisyklių paieška didelėse duomenų bazėse / Association rules search in large data bases

Savulionienė, Loreta 19 May 2014 (has links)
Informacinių technologijų įtaka neatsiejama nuo šiuolaikinio gyvenimo. Bet kokia veiklos sritis yra susijusi su informacijos, duomenų kaupimu, saugojimu. Šiandien nebepakanka tradicinio duomenų apdorojimo bei įvairių ataskaitų formavimo. Duomenų tyrybos technologijų taikymas leidžia iš turimų duomenų išgauti naujus faktus ar žinias, kurios leidžia prognozuoti veiklą, pavyzdžiui, pirkėjų elgesį ar finansines tendencijas, diagnozuoti ligas ir pan. Disertacijoje nagrinėjami duomenų tyrybos algoritmai dažniems posekiams ir susietumo taisyklėms nustatyti. Disertacijoje sukurtas naujas stochastinis dažnų posekių paieškos algoritmas, jo modifikacijos SDPA1, SDPA2 ir stochastinis susietumo taisyklių nustatymo algoritmas bei pateiktas šių algoritmų paklaidų įvertinimas. Šie algoritmai yra apytiksliai, tačiau leidžia suderinti du svarbius kriterijus  laiką ir tikslumą. Šie algoritmai buvo testuojami naudojant realias bei imitacines duomenų bazes. / The impact of information technology is an integral part of modern life. Any activity is related to information and data accumulation and storage, therefore, quick analysis of information is necessary. Today, the traditional data processing and data reports are no longer sufficient. The need of generating new information and knowledge from given data is understandable; therefore, new facts and knowledge, which allow us to forecast customer behaviour or financial transactions, diagnose diseases, etc., can be generated applying data mining techniques. The doctoral dissertation analyses modern data mining algorithms for estimating frequent sub-sequences and association rules. The dissertation proposes a new stochastic algorithm for mining frequent sub-sequences, its modifications SDPA1 and SDPA2 and stochastic algorithm for discovery of association rules, and presents the evaluation of the algorithm errors. These algorithms are approximate, but allow us to combine two important tests, i.e. time and accuracy. The algorithms have been tested using real and simulated databases.
117

Fuzzy Spatial Data Cube Construction And Its Use In Association Rule Mining

Isik, Narin 01 June 2005 (has links) (PDF)
The popularity of spatial databases increases since the amount of the spatial data that need to be handled has increased by the use of digital maps, images from satellites, video cameras, medical equipment, sensor networks, etc. Spatial data are difficult to examine and extract interesting knowledge / hence, applications that assist decision-making about spatial data like weather forecasting, traffic supervision, mobile communication, etc. have been introduced. In this thesis, more natural and precise knowledge from spatial data is generated by construction of fuzzy spatial data cube and extraction of fuzzy association rules from it in order to improve decision-making about spatial data. This involves an extensive research about spatial knowledge discovery and how fuzzy logic can be used to develop it. It is stated that incorporating fuzzy logic to spatial data cube construction necessitates a new method for aggregation of fuzzy spatial data. We illustrate how this method also enhances the meaning of fuzzy spatial generalization rules and fuzzy association rules with a case-study about weather pattern searching. This study contributes to spatial knowledge discovery by generating more understandable and interesting knowledge from spatial data by extending spatial generalization with fuzzy memberships, extending the spatial aggregation in spatial data cube construction by utilizing weighted measures, and generating fuzzy association rules from the constructed fuzzy spatial data cube.
118

Knowledge discovery using pattern taxonomy model in text mining

Wu, Sheng-Tang January 2007 (has links)
In the last decade, many data mining techniques have been proposed for fulfilling various knowledge discovery tasks in order to achieve the goal of retrieving useful information for users. Various types of patterns can then be generated using these techniques, such as sequential patterns, frequent itemsets, and closed and maximum patterns. However, how to effectively exploit the discovered patterns is still an open research issue, especially in the domain of text mining. Most of the text mining methods adopt the keyword-based approach to construct text representations which consist of single words or single terms, whereas other methods have tried to use phrases instead of keywords, based on the hypothesis that the information carried by a phrase is considered more than that by a single term. Nevertheless, these phrase-based methods did not yield significant improvements due to the fact that the patterns with high frequency (normally the shorter patterns) usually have a high value on exhaustivity but a low value on specificity, and thus the specific patterns encounter the low frequency problem. This thesis presents the research on the concept of developing an effective Pattern Taxonomy Model (PTM) to overcome the aforementioned problem by deploying discovered patterns into a hypothesis space. PTM is a pattern-based method which adopts the technique of sequential pattern mining and uses closed patterns as features in the representative. A PTM-based information filtering system is implemented and evaluated by a series of experiments on the latest version of the Reuters dataset, RCV1. The pattern evolution schemes are also proposed in this thesis with the attempt of utilising information from negative training examples to update the discovered knowledge. The results show that the PTM outperforms not only all up-to-date data mining-based methods, but also the traditional Rocchio and the state-of-the-art BM25 and Support Vector Machines (SVM) approaches.
119

Fouille et classement d'ensembles fermés dans des données transactionnelles de grande échelle / Mining and ranking closed itemsets from large-scale transactional datasets

Kirchgessner, Martin 26 September 2016 (has links)
Les algorithmes actuels pour la fouille d’ensembles fréquents sont dépassés par l’augmentation des volumes de données. Dans cette thèse nous nous intéressons plus particulièrement aux données transactionnelles (des collections d’ensembles d’objets, par exemple des tickets de caisse) qui contiennent au moins un million de transactions portant sur au moins des centaines de milliers d’objets. Les jeux de données de cette taille suivent généralement une distribution dite en "longue traine": alors que quelques objets sont très fréquents, la plupart sont rares. Ces distributions sont le plus souvent tronquées par les algorithmes de fouille d’ensembles fréquents, dont les résultats ne portent que sur une infime partie des objets disponibles (les plus fréquents). Les méthodes existantes ne permettent donc pas de découvrir des associations concises et pertinentes au sein d’un grand jeu de données. Nous proposons donc une nouvelle sémantique, plus intuitive pour l’analyste: parcourir les associations par objet, au plus une centaine à la fois, et ce pour chaque objet présent dans les données.Afin de parvenir à couvrir tous les objets, notre première contribution consiste à définir la fouille centrée sur les objets. Cela consiste à calculer, pour chaque objet trouvé dans les données, les k ensembles d’objets les plus fréquents qui le contiennent. Nous présentons un algorithme effectuant ce calcul, TopPI. Nous montrons que TopPI calcule efficacement des résultats intéressants sur nos jeux de données. Il est plus performant que des solutions naives ou des émulations reposant sur des algorithms existants, aussi bien en termes de rapidité que de complétude des résultats. Nous décrivons et expérimentons deux versions parallèles de TopPI (l’une sur des machines multi-coeurs, l’autre sur des grappes Hadoop) qui permettent d’accélerer le calcul à grande échelle.Notre seconde contribution est CAPA, un système permettant d’étudier quelle mesure de qualité des règles d’association serait la plus appropriée pour trier nos résultats. Cela s’applique aussi bien aux résultats issus de TopPI que de jLCM, notre implémentation d’un algorithme récent de fouille d’ensembles fréquents fermés (LCM). Notre étude quantitative montre que les 39 mesures que nous comparons peuvent être regroupées en 5 familles, d’après la similarité des classements de règles qu’elles produisent. Nous invitons aussi des experts en marketing à participer à une étude qualitative, afin de déterminer laquelle des 5 familles que nous proposons met en avant les associations d’objets les plus pertinentes dans leur domaine.Notre collaboration avec Intermarché, partenaire industriel dans le cadre du projet Datalyse, nous permet de présenter des expériences complètes et portant sur des données réelles issues de supermarchés dans toute la France. Nous décrivons un flux d’analyse complet, à même de répondre à cette application. Nous présentons également des expériences portant sur des données issues d’Internet; grâce à la généricité du modèle des ensembles d’objets, nos contributions peuvent s’appliquer dans d’autres domaines.Nos contributions permettent donc aux analystes de découvrir des associations d’objets au milieu de grandes masses de données. Nos travaux ouvrent aussi la voie vers la fouille d’associations interactive à large échelle, afin d’analyser des données hautement dynamiques ou de réduire la portion du fichier à analyser à celle qui intéresse le plus l’analyste. / The recent increase of data volumes raises new challenges for itemset mining algorithms. In this thesis, we focus on transactional datasets (collections of items sets, for example supermarket tickets) containing at least a million transactions over hundreds of thousands items. These datasets usually follow a "long tail" distribution: a few items are very frequent, and most items appear rarely. Such distributions are often truncated by existing itemset mining algorithms, whose results concern only a very small portion of the available items (the most frequents, usually). Thus, existing methods fail to concisely provide relevant insights on large datasets. We therefore introduce a new semantics which is more intuitive for the analyst: browsing associations per item, for any item, and less than a hundred associations at once.To address the items' coverage challenge, our first contribution is the item-centric mining problem. It consists in computing, for each item in the dataset, the k most frequent closed itemsets containing this item. We present an algorithm to solve it, TopPI. We show that TopPI computes efficiently interesting results over our datasets, outperforming simpler solutions or emulations based on existing algorithms, both in terms of run-time and result completeness. We also show and empirically validate how TopPI can be parallelized, on multi-core machines and on Hadoop clusters, in order to speed-up computation on large scale datasets.Our second contribution is CAPA, a framework allowing us to study which existing measures of association rules' quality are relevant to rank results. This concerns results obtained from TopPI or from jLCM, our implementation of a state-of-the-art frequent closed itemsets mining algorithm (LCM). Our quantitative study shows that the 39 quality measures we compare can be grouped into 5 families, based on the similarity of the rankings they produce. We also involve marketing experts in a qualitative study, in order to discover which of the 5 families we propose highlights the most interesting associations for their domain.Our close collaboration with Intermarché, one of our industrial partners in the Datalyse project, allows us to show extensive experiments on real, nation-wide supermarket data. We present a complete analytics workflow addressing this use case. We also experiment on Web data. Our contributions can be relevant in various other fields, thanks to the genericity of transactional datasets.Altogether our contributions allow analysts to discover associations of interest in modern datasets. We pave the way for a more reactive discovery of items' associations in large-scale datasets, whether on highly dynamic data or for interactive exploration systems.
120

A pattern-based approach for business process modeling / Uma Abordagem Baseada em Padrões para Modelagem de Processos de Negócio

Thom, Lucinéia Heloisa January 2006 (has links)
Organizações modernas apresentam demandas relacionadas à automação dos seus processos de negócio devido à alta complexidade dos mesmos e à necessidade de maior eficácia na execução. Neste contexto, a tecnologia de workflow tem se mostrado bastante eficiente, principalmente para a automatização dos processos de negócio. No entanto, por ser uma tecnologia emergente e em evolução, workflow apresenta algumas limitações. Ainda que diversos (meta) modelos de workflow tenham sido propostos nos últimos, anos, seus sub-modelos para representação dos aspectos estruturais da organização apresentam baixo poder de expressão. Além disso, a maioria das ferramentas para modelagem de workflow não provêm funcionalidades para definição, consulta e reuso de padrões. Um dos principais problemas é falta de um mapeamento consolidado entre padrões de funções recorrentes em processos de negócio (ex: solicitação de execução de atividade, aprovação de documentos) e (meta) modelos e/ou ferramentas para modelagem de processos de negócio e workflow. Além disso, a maioria das abordagens em padrões de workflow não exploram a completude e necessidade dos seus padrões para modelagem de workflow. A primeira contribuição desta tese é um Modelo Transacional de Processos de Negócio (MTPN) com suporte aos aspectos estruturais da organização. O metamodelo possibilita a criação de (sub-)processos de negócio a partir do reuso de padrões, principalmente com base nestes aspectos. Adicionalmente, o metamodelo sugere a geração automática de padrões através da Linguagem de Execução para Web Services (BPEL4WS). Outra importante contribuição da tese é um conjunto de padrões de workflow representados como atividades de bloco. Cada padrão descreve uma função recorrente em processos de negócio. A mineração de 190 processos de workflow de mais de 10 organizações diferentes provou a existência dos padrões com alto suporte nos processos de workflow analisados. Além disso, o estudo mostrou que o conjunto de padrões é suficiente e necessário para modelar todos os 190 processos investigados. O estudo também resultou em um conjunto de regras de associação. As regras não apenas contribuem para uma melhor definição dos padrões de atividade de bloco, mas também para a combinação destes com padrões de controle de fluxo. / Modern organizations have demands related to the automation of their business processes since such processes are highly complex and need to be efficiently executed. Within this context, the workflow technology has shown to be very effective, mainly in the business process automation. However, as it is an emergent technology and in constant evolution, workflow presents some limitations. Though several workflow (meta) models have been proposed in recent years, their sub-models for organizational structure aspects representation show limited power of expression. On the other hand, most of the current workflow modeling tools do not provide functionalities that enable users to define, query, and reuse workflow patterns properly. One of the main problems is the non-availability of a consolidated mapping between patterns based on recurrent functions found in business processes (e.g., request for activity execution, notification, decision, or approval) and workflow (meta) models or workflow modeling tools. Relying on these problems, the first contribution of this thesis is a Transactional Metamodel of Business Process (TMBP) with support to organizational structure aspects. The metamodel makes feasible to create business (sub-)processes from the reuse of organizational –based workflow patterns. An additional feature of TMBP supports the generation of business (sub-)processes through the Business Process Execution Language for Web Services (BPEL4WS). Other important contribution of this thesis is a set of workflow patterns represented as block activity patterns. Each pattern refers to a recurrent business function frequently found in business processes. The mining of 190 workflow processes of more than 10 different organizations has evidenced the existence of the set of workflow patterns with high support in the workflow processes analyzed. Moreover, it became clear through this study that the set of patterns is both necessary and enough to design all 190 processes that were investigated. As a consequence of the mining process, a set of association rules was identified too. The rules not only help to better define specific workflow patterns, but also combine them with existent control flow patterns. These rules can be useful for building more complex workflows.

Page generated in 0.1184 seconds