• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 65
  • 47
  • 24
  • 8
  • 5
  • 5
  • 3
  • 3
  • 3
  • 1
  • Tagged with
  • 173
  • 173
  • 115
  • 114
  • 41
  • 40
  • 34
  • 29
  • 28
  • 27
  • 25
  • 25
  • 22
  • 22
  • 19
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
121

A pattern-based approach for business process modeling / Uma Abordagem Baseada em Padrões para Modelagem de Processos de Negócio

Thom, Lucinéia Heloisa January 2006 (has links)
Organizações modernas apresentam demandas relacionadas à automação dos seus processos de negócio devido à alta complexidade dos mesmos e à necessidade de maior eficácia na execução. Neste contexto, a tecnologia de workflow tem se mostrado bastante eficiente, principalmente para a automatização dos processos de negócio. No entanto, por ser uma tecnologia emergente e em evolução, workflow apresenta algumas limitações. Ainda que diversos (meta) modelos de workflow tenham sido propostos nos últimos, anos, seus sub-modelos para representação dos aspectos estruturais da organização apresentam baixo poder de expressão. Além disso, a maioria das ferramentas para modelagem de workflow não provêm funcionalidades para definição, consulta e reuso de padrões. Um dos principais problemas é falta de um mapeamento consolidado entre padrões de funções recorrentes em processos de negócio (ex: solicitação de execução de atividade, aprovação de documentos) e (meta) modelos e/ou ferramentas para modelagem de processos de negócio e workflow. Além disso, a maioria das abordagens em padrões de workflow não exploram a completude e necessidade dos seus padrões para modelagem de workflow. A primeira contribuição desta tese é um Modelo Transacional de Processos de Negócio (MTPN) com suporte aos aspectos estruturais da organização. O metamodelo possibilita a criação de (sub-)processos de negócio a partir do reuso de padrões, principalmente com base nestes aspectos. Adicionalmente, o metamodelo sugere a geração automática de padrões através da Linguagem de Execução para Web Services (BPEL4WS). Outra importante contribuição da tese é um conjunto de padrões de workflow representados como atividades de bloco. Cada padrão descreve uma função recorrente em processos de negócio. A mineração de 190 processos de workflow de mais de 10 organizações diferentes provou a existência dos padrões com alto suporte nos processos de workflow analisados. Além disso, o estudo mostrou que o conjunto de padrões é suficiente e necessário para modelar todos os 190 processos investigados. O estudo também resultou em um conjunto de regras de associação. As regras não apenas contribuem para uma melhor definição dos padrões de atividade de bloco, mas também para a combinação destes com padrões de controle de fluxo. / Modern organizations have demands related to the automation of their business processes since such processes are highly complex and need to be efficiently executed. Within this context, the workflow technology has shown to be very effective, mainly in the business process automation. However, as it is an emergent technology and in constant evolution, workflow presents some limitations. Though several workflow (meta) models have been proposed in recent years, their sub-models for organizational structure aspects representation show limited power of expression. On the other hand, most of the current workflow modeling tools do not provide functionalities that enable users to define, query, and reuse workflow patterns properly. One of the main problems is the non-availability of a consolidated mapping between patterns based on recurrent functions found in business processes (e.g., request for activity execution, notification, decision, or approval) and workflow (meta) models or workflow modeling tools. Relying on these problems, the first contribution of this thesis is a Transactional Metamodel of Business Process (TMBP) with support to organizational structure aspects. The metamodel makes feasible to create business (sub-)processes from the reuse of organizational –based workflow patterns. An additional feature of TMBP supports the generation of business (sub-)processes through the Business Process Execution Language for Web Services (BPEL4WS). Other important contribution of this thesis is a set of workflow patterns represented as block activity patterns. Each pattern refers to a recurrent business function frequently found in business processes. The mining of 190 workflow processes of more than 10 different organizations has evidenced the existence of the set of workflow patterns with high support in the workflow processes analyzed. Moreover, it became clear through this study that the set of patterns is both necessary and enough to design all 190 processes that were investigated. As a consequence of the mining process, a set of association rules was identified too. The rules not only help to better define specific workflow patterns, but also combine them with existent control flow patterns. These rules can be useful for building more complex workflows.
122

Algoritmo SSDM para a mineração de dados semanticamente similares.

Escovar, Eduardo Luís Garcia 28 May 2004 (has links)
Made available in DSpace on 2016-06-02T19:05:56Z (GMT). No. of bitstreams: 1 DissELGE.pdf: 764248 bytes, checksum: 4660cc71261254f054468d04e4659dc6 (MD5) Previous issue date: 2004-05-28 / Financiadora de Estudos e Projetos / The SSDM algorithm, created to allow semantically similar data mining, is presented in this work. Using fuzzy logic concepts, this algorithm analyzes the similarity grade between items, considering it if it is greater than a user-defined parameter. When this occurs, fuzzy associations between items are established, and are expressed in the association rules obtained. Therefore, besides associations discovered by conventional algorithms, SSDM also discovers semantic associations, showing them together with the other rules obtained. To do that, strategies are defined to discover these associations and calculate the support and the confidence of the rules where they appear. / Neste trabalho é apresentado o algoritmo SSDM, criado para permitir a mineração de dados semanticamente similares. Usando conceitos de lógica nebulosa, esse algoritmo analisa o grau de similaridade entre os itens, e o considera caso ele seja maior do que um parâmetro definido pelo usuário. Quando isso ocorre, são estabelecidas associações nebulosas entre os itens, que são expressas nas regras de associação obtidas. Assim, além das associações descobertas por algoritmos convencionais, o SSDM também descobre associações semânticas, e as exibe junto às demais regras obtidas. Para isso, são definidas estratégias para descobrir essas associações e para calcular o suporte e a confiança das regras onde elas aparecem.
123

Mineração de regras de associação sequenciais em séries temporais e visualização: aplicação em dados agrometeorológicos

Cano, Marcos Daniel 03 August 2012 (has links)
Made available in DSpace on 2016-06-02T19:06:12Z (GMT). No. of bitstreams: 1 5971.pdf: 5628502 bytes, checksum: 38bfe45912e4f91f4ad8c7fb5fb815db (MD5) Previous issue date: 2012-08-03 / Universidade Federal de Minas Gerais / Technological development brought improvements in the technology of climate sensors and Earth's surface image acquisition, gathering increasing amounts of data. Generally, when these data are submitted to mining algorithms, the output is the production of hundreds or even thousands of textual patterns, making the task of data analysis by the domain expert even harder. Hence, it is crucial, to support experts, the development of a tool that helps to identify and display patterns of interest. In this context, this research project at Master Science level aims to develop a technique for mining association rules in time series allowing agrometeorological data analysis over time. / O avanço tecnológico tem propiciado melhorias nos diversos sensores utilizados para medições dos dados climáticos e de imageamento da superfície terrestre, coletando quantidades cada vez maiores de dados. Quando esses dados são submetidos aos algoritmos de mineração para serem explorados ocorre, em geral, a produção de centenas ou ate mesmo milhares de padrões textuais, dificultando ainda mais a tarefa de analise dos dados pelo especialista de domínio. Assim, e crucial, para apoiar os especialistas, o desenvolvimento de um ferramental que auxilia na identificação e visualização dos padrões de interesse. Neste contexto, este projeto de pesquisa em nível de mestrado visa desenvolver uma técnica de mineração de regras de associação em series temporais permitindo a analise de dados agrometeorológicos ao longo do tempo.
124

Consultas por similaridade e mineração de regras de associação: maximizando o conhecimento extraído de séries temporais

Andrade, Claudinei Garcia de 28 August 2014 (has links)
Made available in DSpace on 2016-06-02T19:06:18Z (GMT). No. of bitstreams: 1 6337.pdf: 1365151 bytes, checksum: 464969011137271e4d5d5088872c236b (MD5) Previous issue date: 2014-08-28 / A time series analysis presents challenges. There is a difficulty to manipulate the data by requiring a large computational cost, or even, by the difficulty of finding subsequences that have the same characteristics. However, this analysis is important for understanding the evolution of various phenomena such as climate change, changes in financial markets among others. This project proposed the development of a method for performing similarity queries in time series that have better performance and accuracy than the state-of-art and a method of mining association rules in series using similarity. The experiments performed have applied the proposed methods in real data sets, bringing relevant knowledge, indicating that both methods are suitable for analysis by similarity of one-dimensional and multidimensional time series. / A analise de séries temporais apresenta certos desafios. Seja pela dificuldade na manipulação dos dados, por exigir um grande custo computacional, ou mesmo pela dificuldade de se en¬contrar subsequências que apresentam as mesmas características. No entanto, essa analise e importante para o entendimento da evolução de diversos fenômenos como as mudanças climaticas, as variações no mercado financeiro entre outros. Este projeto de mestrado propos o desenvolvimento de um método para a realização de consultas por similaridade em series temporais que apresentam melhor desempenho e acurâcia que o estado-da-arte e um método de mineração de regras de associação em series utilizando similaridade. Os experimentos feitos aplicaram os métodos propostos em conjuntos de dados reais, trazendo conhecimento relevante, indicando que os metodos são adequados para analise por similaridade de series temporais unidimensionais e multidimensionais.
125

Aplicação de técnicas de Data Mining para auxiliar no processo de fiscalização no âmbito do Tribunal de Contas do Estado da Paraíba

Grilo Júnior, Tarcísio Ferreira 03 September 2010 (has links)
Made available in DSpace on 2015-05-08T14:53:30Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 2082485 bytes, checksum: 0c5cd714d0a43bac80888cfc1dd4e7cb (MD5) Previous issue date: 2010-09-03 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This search has as goal to validate the hypothesis of the applicability of data mining techniques in Bidding and Contracts database managed by the Account Court of Paraiba State, enabling the generation of rules and discovery of hidden knowledge or implicit, contributing to the process of decision making, supervision and celerity in this Court of Auditors. To the best comprehension of this work, It was made a literature revision bringing at first place a historic vision about the decision process, as well as this theme evolution studies and the relation between the tender processes sent to Account Court of Paraiba State and the fraud indication discovery process and irregularities through the data mining process using. We will bring to light the concept of Business Intelligence (BI) and for it`s main components, as well as the concepts of knowledge discovery in database, and a comparing between the using of the instruments of data mining. We expect from this implant of the data mining an increase in the productivity and also an increase in speed of lawsuit process from the public accounts analysis and public money fiscal control. / Esta pesquisa tem como objetivo validar a hipótese da aplicabilidade das técnicas de mineração de dados na base de dados de Licitação e Contratos gerenciada pelo Tribunal de Contas do Estado da Paraíba (TCE-PB), possibilitando a geração de regras e descoberta de conhecimento oculto ou implícito, contribuindo desta forma com o processo de tomada de decisão, fiscalização e celeridade processual no âmbito desta Corte de Contas. Para melhor compreensão desse trabalho foi realizada uma revisão de literatura abordando primeiramente um histórico sobre o processo de decisão, bem como a evolução dos estudos deste tema e da relação entre os processos licitatórios enviados ao TCE-PB e o processo de descoberta de indícios de fraudes e irregularidades através do uso de mineração de dados. São abordados os conceitos sobre a tecnologia de Business Intelligence (BI) e dos seus principais componentes, bem como os conceitos de Descoberta de Conhecimentos em Bases de Dados (Knowledge Discorevy in Databases), e uma comparação das funcionalidades presentes nas ferramentas de mineração de dados. Espera-se com a implantação desta ferramenta de mineração de dados, um ganho de produtividade e um aumento na celeridade do tramite processual decorrentes da análise das contas públicas e na fiscalização do erário.
126

Regras de associação aplicadas aos filtros de mensagens e canais de informação do projeto direto / Association rules applied to messages filters and information channel in the direto environment

Frighetto, Michele January 2003 (has links)
Neste trabalho é apresentado um breve estudo sobre o processo de descoberta de conhecimento em banco de dados, com enfoque na etapa de mineração de dados através de regras de associação. Propostas por Agrawal em 1993, num estudo chamado análise de cesta de mercado, as regras de associação representam que com um certo grau de suporte e confiança um conjunto de itens pode estar presente numa transação visto que outro conjunto está presente. A necessidade de análise semelhante às realizadas por Agrawal surgiu em outros campos e estas foram estendidas a outras aplicações. Neste, são apresentadas as principais variações sobre o tema regras de associação encontradas na literatura. É proposta a mineração de dados através de regras de associação sobre filtros de mensagens e canais de informação do software de catálogo, agenda e correio eletrônico Direto. Para as pesquisas são utilizadas três ferramentas: Intelligent Miner, CBA e Magnus Opus. Elas foram aplicadas sobre uma lista de discussão da Linguagem Java, pois o projeto Direto ainda não possui mensagens públicas. As ferramentas possuem características distintas: o Intelligent Miner permite a definição de hierarquias sobre os dados que serão minerados; o Magnus Opus trabalha com diversos filtros e com a definição de intervalos para o tratamento de campos numéricos; o CBA permite que sejam especificados suportes múltiplos para os itens. / This work presents a brief review about knowledge discovery in database having association rules as the data mining process. Association rules were proposed by Agrawal in 1993 in a basket data analysis. Association rules have been extended to other applications because there is a necessity for similar Agrawal’s analysis in different domains. Here are presented some variations proposed in the literature about association rules along with the main algorithms. This work proposes the use of association rules over message filters and information channels from the Direto, which is a catalog, schedule and e-mail software. Three data mining tools were used: Intelligent Miner, CBA and Magnus Opus. They were applied over a Java discussion list because Direto project does not have public messages. Each tool has distinct features: Intelligent Miner allows to define a hierarchy over the data that will be mined; Magnus Opus works with many filters over the data and permits to define ranges over numeric fields and CBA allows to specify multiple minimum support over the items.
127

A pattern-based approach for business process modeling / Uma Abordagem Baseada em Padrões para Modelagem de Processos de Negócio

Thom, Lucinéia Heloisa January 2006 (has links)
Organizações modernas apresentam demandas relacionadas à automação dos seus processos de negócio devido à alta complexidade dos mesmos e à necessidade de maior eficácia na execução. Neste contexto, a tecnologia de workflow tem se mostrado bastante eficiente, principalmente para a automatização dos processos de negócio. No entanto, por ser uma tecnologia emergente e em evolução, workflow apresenta algumas limitações. Ainda que diversos (meta) modelos de workflow tenham sido propostos nos últimos, anos, seus sub-modelos para representação dos aspectos estruturais da organização apresentam baixo poder de expressão. Além disso, a maioria das ferramentas para modelagem de workflow não provêm funcionalidades para definição, consulta e reuso de padrões. Um dos principais problemas é falta de um mapeamento consolidado entre padrões de funções recorrentes em processos de negócio (ex: solicitação de execução de atividade, aprovação de documentos) e (meta) modelos e/ou ferramentas para modelagem de processos de negócio e workflow. Além disso, a maioria das abordagens em padrões de workflow não exploram a completude e necessidade dos seus padrões para modelagem de workflow. A primeira contribuição desta tese é um Modelo Transacional de Processos de Negócio (MTPN) com suporte aos aspectos estruturais da organização. O metamodelo possibilita a criação de (sub-)processos de negócio a partir do reuso de padrões, principalmente com base nestes aspectos. Adicionalmente, o metamodelo sugere a geração automática de padrões através da Linguagem de Execução para Web Services (BPEL4WS). Outra importante contribuição da tese é um conjunto de padrões de workflow representados como atividades de bloco. Cada padrão descreve uma função recorrente em processos de negócio. A mineração de 190 processos de workflow de mais de 10 organizações diferentes provou a existência dos padrões com alto suporte nos processos de workflow analisados. Além disso, o estudo mostrou que o conjunto de padrões é suficiente e necessário para modelar todos os 190 processos investigados. O estudo também resultou em um conjunto de regras de associação. As regras não apenas contribuem para uma melhor definição dos padrões de atividade de bloco, mas também para a combinação destes com padrões de controle de fluxo. / Modern organizations have demands related to the automation of their business processes since such processes are highly complex and need to be efficiently executed. Within this context, the workflow technology has shown to be very effective, mainly in the business process automation. However, as it is an emergent technology and in constant evolution, workflow presents some limitations. Though several workflow (meta) models have been proposed in recent years, their sub-models for organizational structure aspects representation show limited power of expression. On the other hand, most of the current workflow modeling tools do not provide functionalities that enable users to define, query, and reuse workflow patterns properly. One of the main problems is the non-availability of a consolidated mapping between patterns based on recurrent functions found in business processes (e.g., request for activity execution, notification, decision, or approval) and workflow (meta) models or workflow modeling tools. Relying on these problems, the first contribution of this thesis is a Transactional Metamodel of Business Process (TMBP) with support to organizational structure aspects. The metamodel makes feasible to create business (sub-)processes from the reuse of organizational –based workflow patterns. An additional feature of TMBP supports the generation of business (sub-)processes through the Business Process Execution Language for Web Services (BPEL4WS). Other important contribution of this thesis is a set of workflow patterns represented as block activity patterns. Each pattern refers to a recurrent business function frequently found in business processes. The mining of 190 workflow processes of more than 10 different organizations has evidenced the existence of the set of workflow patterns with high support in the workflow processes analyzed. Moreover, it became clear through this study that the set of patterns is both necessary and enough to design all 190 processes that were investigated. As a consequence of the mining process, a set of association rules was identified too. The rules not only help to better define specific workflow patterns, but also combine them with existent control flow patterns. These rules can be useful for building more complex workflows.
128

Projeto e avaliação de algoritmos paralelos para sistemas Multicore e Manycore aplicados no processamento de documentos / Design and evaluation of parallel algorithms for Multicore and Manycore systems applied on document processing

Freitas, Mateus Ferreira e 30 August 2017 (has links)
Submitted by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-02T15:28:01Z No. of bitstreams: 2 Dissertação - Mateus Ferreira e Freitas - 2017.pdf: 4269845 bytes, checksum: e84e69d8747a21125170793812384a98 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Approved for entry into archive by Luciana Ferreira (lucgeral@gmail.com) on 2017-10-02T15:30:07Z (GMT) No. of bitstreams: 2 Dissertação - Mateus Ferreira e Freitas - 2017.pdf: 4269845 bytes, checksum: e84e69d8747a21125170793812384a98 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) / Made available in DSpace on 2017-10-02T15:30:07Z (GMT). No. of bitstreams: 2 Dissertação - Mateus Ferreira e Freitas - 2017.pdf: 4269845 bytes, checksum: e84e69d8747a21125170793812384a98 (MD5) license_rdf: 0 bytes, checksum: d41d8cd98f00b204e9800998ecf8427e (MD5) Previous issue date: 2017-08-30 / Several applications process documents in different ways, aiming to filter, organize or learn with them. Nowadays, a great computational power is necessary in order to do that efficiently, due to the large and increasing number of documents. Usually, documents are independent of each other, which facilitates the use of parallelism to speed up this processing. This work explores three problems: active learning, learning to rank (L2R) and top-k search. Using the parallelism on multicore CPUs and manycore GPUs (Graphics Processing Unit), parallel algorithms were proposed and evaluated for each problem, and implemented with the OpenMP and CUDA APIs. For the active learning problem a multicore algorithm was proposed, which obtained 10.8x of speedup in the best case with 12 threads. The proposed manycore version obtained 128x of speedup over the serial version, and a solution with 4 GPUs achieved 3.5x of speedup over 1 GPU. For the L2R problem a manycore algorithm was proposed, which follows a thread-block approach using the concept of Combinadic, and uses a cache with fingerprint to speed up the processing. The best case speedups were 508x over the serial, 9x over a GPU baseline, and 4x over our solution when using 4 GPUs. When comparing with a version without combinadic, the speedup over it was 4.4x with both versions using 1 GPU and 3.9x with 4. These solutions used bitmap structures to speed up the association rules creation. In the top-k search a serial and multicore solutions were implemented from a state of the art manycore algorithm for exact searches. These implementations served as baselines for our extension of this algorithm, which includes the use of multi-GPU, group searches and an intra-block load balancing. The speedups were 2.7x over the original algorithm, 17x over the serial, 4x over the multicore, and 4x over our version when using 4 GPUs. / Diversas aplicações processam documentos de diferentes maneiras, visando filtrá-los, organizá-los ou aprender com eles. Atualmente, é necessário um grande poder computacional para que isso seja feito eficientemente, devido ao número grande e crescente de documentos. Geralmente os documentos são independentes entre si, o que facilita o uso de paralelismo para acelerar esse processamento. Este trabalho explora três problemas: aprendizado ativo, learning to rank (L2R) e busca top-k. Usando o paralelismo em CPUs multicore e GPUs (Graphics Processing Unit) manycore, algoritmos paralelos foram propostos e avaliados para cada problema, e implementados com as APIs OpenMP e CUDA. Para problema de aprendizado ativo foi proposto um algoritmo multicore, que obteve speedup de 10,8x no melhor caso com 12 threads. A versão manycore proposta obteve speedup de 128x em relação ao serial, e uma solução com 4 GPUs atingiu 3,5x de speedup sobre 1 GPU. Para o problema de L2R foi proposto um algoritmo manycore, que segue uma abordagem por bloco de threads} usando o conceito de Combinadic, e usa uma cache} com fingerprint para acelerar o processamento. Os speedups nos melhores casos foram de 508x sobre o serial, 9x sobre uma baseline em GPU, e 4x sobre nossa solução com 1 GPU ao usar 4 GPUs. Ao comparar com uma versão sem o combinadic, o speedup sobre ela foi de 4,4x com ambas versões usando 1 GPU e 3,9x usando 4. Estas soluções usaram estruturas de mapa de bits para acelerar a criação de regras de associação. Na busca top-k foram implementadas uma solução serial e uma multicore de um algoritmo manycore estado da arte para buscas exatas. Estas implementações serviram de baseline para nossa extensão desse algoritmo, que inclui o uso de multi-GPU, buscas em grupos e um balanceamento de carga intra-bloco. Os speedups obtidos foram de 2,7x sobre o algoritmo original, 17x sobre o serial, 4x sobre o multicore, e 4x sobre nossa versão ao usar 4 GPUs.
129

Evolução de regras de associação para recomendação de produtos em comércio eletrônico

Cunha, Danilo Souza da 23 October 2013 (has links)
Made available in DSpace on 2016-03-15T19:37:52Z (GMT). No. of bitstreams: 1 Danilo Souza da Cunha.pdf: 1082171 bytes, checksum: 4d2c64017c5641baf212b0fe377da373 (MD5) Previous issue date: 2013-10-23 / Fundo Mackenzie de Pesquisa / E-commerce has been growing rapidly over the past years. Various products, services, and information are constantly offered to millions of internet users. Defining an adequate strategy to offer a product to a customer is the main goal of a recommender system. To do so, the items to be offered have to take into account the interests of each customer. This association of items is a data mining task, more specifically a task called association rule mining. This dissertation investigated the use of bioinspired algorithms, particularly evolutionary and im-mune algorithms, to build associations among items of a database. Three sets of experiments were performed: an investigation into the influence of different selection and crossover mech-anisms in an evolutionary algorithm for association rule mining; the use of a probabilistic selection in the immune algorithm; and a comparison of the bioinspired algorithms with the standard deterministic algorithm called Apriori. The data bases for comparison were taken from real e-commerce applications. The results allowed the identification of a suitable combi-nation of the selection and crossover mechanisms for the evolutionary algorithm, and to iden-tify the strengths and weaknesses of all approaches when applied to real-world recommender systems. / O comércio eletrônico vem crescendo rapidamente ao longo dos últimos anos. Produtos, serviços e informações dos mais variados tipos são oferecidos todos os dias para milhares de usuários na Internet. Definir uma estratégia adequada para oferecer um produto a clientes é o objetivo dos sistemas de recomendação. Para isso leva em conta itens que podem ser ofertados considerando o interesse de cada cliente. Essa associação entre itens é uma tarefa que recai sobre a competência da mineração de dados, mais especificamente a área chamada de mineração de regras de associação. Esta dissertação investigou o uso de algoritmos bioinspirados, mais especificamente algoritmos evolutivos e imunológicos, a fim de construir associações entre os itens de uma base de dados. Foram feitos três estudos: a influência de diferentes mecanismos de seleseleção e cruzamento no algoritmo evolutivo; o uso de seleção probabilística no algoritmo imunológico; e a comparação dos algoritmos bioinspirados com o algoritmo determinístico clássico aplicado a essa tarefa, chamado de Apriori. As bases de dados para efeitos comparativos foram coletadas em lojas nacionais de comércio eletrônico. Os resulta-dos apresentados permitiram identificar uma combinação adequada dos mecanismos de sele-ção e cruzamento do algoritmo evolutivo, assim como identificar os pontos fortes e fracos dos algoritmos bioinspirados quando comparados ao algoritmo tradicional.
130

Selecionando candidatos a descritores para agrupamentos hierárquicos de documentos utilizando regras de associação / Selecting candidate labels for hierarchical document clusters using association rules

Fabiano Fernandes dos Santos 17 September 2010 (has links)
Uma forma de extrair e organizar o conhecimento, que tem recebido muita atenção nos últimos anos, é por meio de uma representação estrutural dividida por tópicos hierarquicamente relacionados. Uma vez construída a estrutura hierárquica, é necessário encontrar descritores para cada um dos grupos obtidos pois a interpretação destes grupos é uma tarefa complexa para o usuário, já que normalmente os algoritmos não apresentam descrições conceituais simples. Os métodos encontrados na literatura consideram cada documento como uma bag-of-words e não exploram explicitamente o relacionamento existente entre os termos dos documento do grupo. No entanto, essas relações podem trazer informações importantes para a decisão dos termos que devem ser escolhidos como descritores dos nós, e poderiam ser representadas por regras de associação. Assim, o objetivo deste trabalho é avaliar a utilização de regras de associação para apoiar a identificação de descritores para agrupamentos hierárquicos. Para isto, foi proposto o método SeCLAR (Selecting Candidate Labels using Association Rules), que explora o uso de regras de associação para a seleção de descritores para agrupamentos hierárquicos de documentos. Este método gera regras de associação baseadas em transações construídas à partir de cada documento da coleção, e utiliza a informação de relacionamento existente entre os grupos do agrupamento hierárquico para selecionar candidatos a descritores. Os resultados da avaliação experimental indicam que é possível obter uma melhora significativa com relação a precisão e a cobertura dos métodos tradicionais / One way to organize knowledge, that has received much attention in recent years, is to create a structural representation divided by hierarchically related topics. Once this structure is built, it is necessary to find labels for each of the obtained clusters, since most algorithms do not produce simple descriptions and the interpretation of these clusters is a difficult task for users. The related works consider each document as a bag-of-words and do not explore explicitly the relationship between the terms of the documents. However, these relationships can provide important information to the decision of the terms that must be chosen as descriptors of the nodes, and could be represented by rass. This works aims to evaluate the use of association rules to support the identification of labels for hierarchical document clusters. Thus, this paper presents the SeCLAR (Selecting Candidate Labels using Association Rules) method, which explores the use of association rules for the selection of good candidates for labels of hierarchical clusters of documents. This method generates association rules based on transactions built from each document in the collection, and uses the information relationship between the nodes of hierarchical clustering to select candidates for labels. The experimental results show that it is possible to obtain a significant improvement with respect to precision and recall of traditional methods

Page generated in 0.0739 seconds