• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • Tagged with
  • 5
  • 5
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Aniontové receptory založené na symetricky tetrasubstituovaných kalix[4]arenech / Anion receptors based on symmetrically tetrasubstituted calix[4]arenes

Klimentová, Jana January 2011 (has links)
The submitted Ph.D. thesis concerns anion receptors based on symmetrically tetrasubstituted cone calixf4]arenes. These receptors are easily synthesized and display sufficient water solubility to function as receptors for tetrahedral oxoanions. The thesis starts with a brief survey of literature on calix[4larene anion receptors and sensors. The theoretical part of the thesis deals with a stereochemical investigation of calixf4]arenes from the Cambridge Structural Database (CSD) with emphasis on the influence of inter- and/or intramolecular interactions on the geometry and rigidity of the calix[4]arene scaffold. In order to describe the geometry of the calixf4]arene moiety, it was necessary to introduce new stereochemical parameters cr, B and 5. The utility of these parameters in evaluating the geometry of the calixf4]arene base frame was confirmed. The stereochemical investigation formed the basis for design of new potential anion receptors based on symmetric al ly tetrasub stituted c o n e calixl4 ] arene s. The experimental part of this work started with synthesis of symmetrically tetrasubstituted calixf4]arene derivatives containing 1-propoxy groups at the lower rim and synthesis of calixf4]arene derivatives with carboxymethoxy groups at the lower rim and enhanced water solubility. Identity and...
2

Polymer networks architecture using supramolecular interactions

Ni, Yiping 20 November 2012 (has links) (PDF)
Supramolecular polymer networks are prepared basing on two different supramolecular interactions, ionic interaction and hydrogen bonds interaction. Ionic interaction was introduced in P(BMA-co-MA) with CaCO3 as a filler. The presence of Ca2+ is confirmed with X-ray diffraction by the apperence of specific ionic peak. The hydrogen bond interaction was introduced by two approaches. One is to first prepare a supramolecular monomer bearing DA moiety then supramolecular polymer P(MAAM-co-St) and P(MAP-co-St) are prepared by polyaddition. In the other approach, the supramolecular polymer is synthesized by one-step PUU polycodensation from the reagent containing multiple-hydrogen-bond sequence. The presence of intermolecular hydrogen bonds is detected by FTIR qualitatively, and the strengh, quantified as Kass, is calculated by 1H-NMR for different moieties respectively. Solubility tests indicate that the introduction of supramolecular interaction in the traditional polymers leads to the crosslinking in different extents. Consequently, materials are strengthened showing better thermo-endurence property and higher modulus when the content of supramolecular moiety is increased. Furthermore, rheological analysis is performed to investigate the viscoelasticity and to track the thermo reversibility
3

The Influence of pH and Temperature on the Encapsulation of Quinine by Alpha, Beta, and Gamma Cyclodextrins as Explored by NMR Spectroscopy

Poulson, Benjamin Gabriel 11 1900 (has links)
Cyclodextrins are well known for their ability to encapsulate molecules and have captured the attention of scientists for many years. This ability alone makes cyclodextrins attractive for study, research, and applications in many fields including food, cosmetics, textiles, and the pharmaceutical industry. In this thesis, we specifically look at the ability of the three native cyclodextrins, alpha, beta, and gamma cyclodextrin (α-CD, β-CD, and γ-CD, respectively), to encapsulate the drug molecule, quinine, a small hydrophobic, lipophilic molecule used to treat malaria, leg cramps, and other similar conditions. This encapsulation process is driven by the molecular interactions, which have been studied by NMR techniques at different temperatures (288 K, 293 K, 298 K, 303 K, 308 K) and pH values (7.4, 11.5). These factors (temperature and pH) influence these molecular interactions, which in turn significantly affects the entire encapsulation process. Detailed studies of the influences of temperature and pH on the interactions that drive the encapsulation may suggest some new directions into designing controlled drug release processes. Results obtained throughout the course of this work indicate that β-CD is the best native cyclodextrin to bind quinine, and that binding is best at pH = 11.5. It was found that temperature does not significantly affect the binding affinity of quinine to either α-CD, β-CD, or γ-CD.
4

Enhanced Architectural and Structural Regulation Using Controlled Free Radical Polymerization Techniques; Supramolecular Assemblies: Pseudorotaxanes and Polypseudorotaxanes

Jones, Jason William 24 April 2001 (has links)
Due in large part to the growth and development of reliable surface characterization techniques, as well as to advances in the physical and chemical techniques used to modify surfaces, the technology of surface modification has seen rapid expansion over the past two decades. A major thrust of this research is the growth of controlled/"living" polymeric brushes from the surface of various substrates, an advance that promises to be a facile and reproducible way of altering surface properties. A unique initiator bearing ATRP (atom transfer radical polymerization), cleavage, and condensation functionalities was prepared and attached to the hydrolyzed surface of silica gel. Preliminary results indicate that control of reversibly terminated grafts of varying degrees of polymerization with polydispersity indices approaching 1.5 can be readily achieved-significant findings in the quest to design desired surface characteristics. Important physical characteristics may also be altered by way of varying molecular topologies. In the second major research thrust, the use of self-assembly to construct such topologies in the form of pseudorotaxanes fashioned from diverse macrocycles with multifarious guest ions is discussed. While the underlying goal was to investigate and understand the mode of complexation based on such environmental factors as substituent affects and neighboring group influences, new insight was gained on the synthetic manipulation of cooperative events-events that freely occur in nature. The complexation behavior of several functionalized bis-(meta-phenylene)-32-crown-10 macrocycles with various paraquat guest moieties was. As expected, studies indicated that electron-donating substituents on the crown ether drive association, a likely result of increased p -p interactions among host and guest species. The association between a bicyclic macrocycle and dimethyl paraquat was also investigated. Not surprisingly, binding of paraquat by the bicyclic was much stronger than the binding found in analogous macrocycles. Lastly, the endgroup functionalization of poly(propyleneimine) dendrimers with two crown ether macrocycles was performed and the complexation with host-specific guests studied. Curiously, two extreme binding regimes were found: the larger 32-membered crown ether assembly displayed anti-cooperative behavior upon complexation with paraquat, while the smaller 24-membered macrocyclic system exhibited cooperative effects with 2o ammonium ions. These cooperative results are among the very first described for non-biological systems and hint at their potential use in developing highly efficient, synthetically designed supramolecular systems. / Master of Science
5

Polymer networks architecture using supramolecular interactions / Architecture de réseaux polymères utilisant des intéractions supramoléculaires

Ni, Yiping 20 November 2012 (has links)
Des réseaux polymères supramoléculaires ont été préparés à partir de deux types d’interactions supramoléculaires différentes, ionique et par liaisons hydrogène. Les interactions ioniques ont été introduites dans des P(BMA-co-MA) par l’introduction de CaCO3 comme charge capable de se décomposer partiellement pour former des cation Ca2+. La présence de Ca2+ a été confirmée par diffraction de rayons X par l’observation d’un pic ionique caractéristique. Les interactions par liaisons hydrogène ont été introduites selon deux approches. L’une a été de préparer d’abord un monomère supramoléculaire avec un motif DA (donneur-accepteur) pour ensuite le copolymériser en polymères supramoléculaires P(MAAM-co-St) et P(MAP-co-St) par polyaddition. Par l'autre approche, le polymère supramoléculaire a été synthétisé par polycondensation de PUU, monomères contenant des liaisons hydrogène multiples. La présence de liaisons hydrogène intermoléculaires a mise en évidence par IRTF qualitativement, et la constante d’association Kass a été calculée par 1H-RMN pour les motifs d’association. Des tests solubilité ont indiqué que la génération d'interactions supramoléculaires dans les polymères conduit à des réticulations. En conséquence, les matériaux sont renforcés et présentent une meilleure thermo-résistance et des modules plus élevés lorsque la fraction motifs supramoléculaire est augmentée. En outre, Des analyses rhéologiques ont été réalisées pour étudier la viscoélasticité et la thermo-réversibilité de ces systèmes physiquement réticulé / Supramolecular polymer networks are prepared basing on two different supramolecular interactions, ionic interaction and hydrogen bonds interaction. Ionic interaction was introduced in P(BMA-co-MA) with CaCO3 as a filler. The presence of Ca2+ is confirmed with X-ray diffraction by the apperence of specific ionic peak. The hydrogen bond interaction was introduced by two approaches. One is to first prepare a supramolecular monomer bearing DA moiety then supramolecular polymer P(MAAM-co-St) and P(MAP-co-St) are prepared by polyaddition. In the other approach, the supramolecular polymer is synthesized by one-step PUU polycodensation from the reagent containing multiple-hydrogen-bond sequence. The presence of intermolecular hydrogen bonds is detected by FTIR qualitatively, and the strengh, quantified as Kass, is calculated by 1H-NMR for different moieties respectively. Solubility tests indicate that the introduction of supramolecular interaction in the traditional polymers leads to the crosslinking in different extents. Consequently, materials are strengthened showing better thermo-endurence property and higher modulus when the content of supramolecular moiety is increased. Furthermore, rheological analysis is performed to investigate the viscoelasticity and to track the thermo reversibility

Page generated in 0.4218 seconds