Spelling suggestions: "subject:"astrofysik"" "subject:"astrofysikk""
231 |
Many-body Problems in the Theory of Stellar Collapse and Neutron Stars / Mångkropparsproblem inom teorin för neutronstjärnor och supernovaexplosionerOlsson, Emma January 2004 (has links)
When modelling the collapse of massive stars leading to supernova explosions and the cooling of neutron stars, understanding the microphysical processes, such as the interaction of neutrinos within a dense medium are of vital importance. The interaction of neutrinos with nucleons (neutrons and protons) is altered by the presence of the medium, compared to the same process with free nucleons. Neutrino scattering and production processes may be characterized in terms of the excitations that are created or destroyed in the nuclear medium. One way to analyse the effects of the medium is by using Landau's theory of normal Fermi liquids. This theory gives simple relationships between physical quantities such as the spin susceptibility or the response to a weak interaction probe in terms of Landau parameters, that are measures of the interaction between quasiparticles. One problem when using Landau Fermi liquid theory for nucleon matter is that the interaction has a tensor component. The tensor interaction does not conserve the total spin and, as a consequence, there are generally contributions to long-wavelength response functions from states that have more than one quasiparticle-quasihole pair in the intermediate state. Such contributions cannot be calculated in terms of Landau parameters alone, since in the usual formulation of Landau theory, only singlepair excitations are considered. In this thesis three problems are addressed. First, we obtain bounds on the contributions from more than one quasiparticle-quasihole pair by using sum-rule arguments. Second, we derive expressions for static response functions allowing for the tensor components of the interaction. We analyse which the most important effects are on the static response of nucleon matter, and find that the major contributions comes from renormalization of coupling constants and transitions to states with more than one quasiparticle-quasihole pair. Third, we show how contributions to the dynamical response coming from states containing two quasiparticle-quasihole pairs may be evaluated in terms of Landau theory if one allows for the effect of collisions in the Landau kinetic equation. We consider the case of asymmetric nuclear matter, and our work goes beyond earlier works in that they contain the effects of collisions in addition to those of the mean field.
|
232 |
On the Abundances of Li, Be and O in Metal-Poor Stars in the GalaxyGarcía Pérez, Ana Elia January 2005 (has links)
Stellar atmospheres constitute excellent environments to study the chemical evolution of our Galaxy. The chemical composition of these atmospheres reflects the composition of the gas from where these stars were born. As the Galaxy evolves, the composition of the gas changes from being primordial (Big-Bang nucleosynthesis) to being enriched in heavy elements (stellar and interstellar nucleosynthesis). The abundances of fragile chemical elements can be affected by stellar mixing processes. Precise lithium, beryllium and oxygen abundance determinations in old stars are presented in this thesis. These determinations are based on the analysis of the observed spectra of a sample of thirteen metal-poor subgiant stars. According to stellar mixing theories, these stars are in a stellar evolutionary stage in which mixing by convection is expected. Abundances of fragile elements like lithium and beryllium are thus expected to be affected by such mixing processes. As a consequence of this, the abundances of these elements are discussed in a dilution context. Lithium and beryllium abundances are compared with the abundances of stars with similar characteristics but in a less evolved stellar phase so that mixing processes have not acted yet. As expected, our abundances seem to be depleted following reasonably well the standard predictions. Stellar abundances of oxygen should give an estimate of the oxygen contribution of core-collapse supernovae to the interstellar medium. However, there is poor agreement among the abundances determined from different atomic or molecular indicators in general. Abundances coming from three different indicators are compared in this thesis. The abundances determined from the O I infrared triplet lines at 777.1-5 nm give the poorest agreement among the three indicators. The abundances based on OH ultraviolet lines around 310 nm are lower for the subgiants in comparison with previous studies of main-sequence stars, becoming even lower than values based on the O I forbidden line at 630.03 nm. Still the most reliable indicator appears to be the O I forbidden line which suggests a plateau-like or only slowly increasing [O/Fe] towards lower [Fe/H]. In addition, the line formation of the Be II ultraviolet resonance lines at 313.0-1 nm, commonly used for abundance determinations purposes, is investigated under non-local thermodynamic equilibrium. We find that the common assumption of local thermodynamic equilibrium typically gives systematic errors of about 0.1 dex.
|
233 |
Chemical Abundance Analysis of Population II Stars : The Summary Includes a Background in General AstronomyJonsell, Karin January 2005 (has links)
We are made of stardust in the sense that most atomic nuclei around us have been formed by stars. Stars synthesise new elements and expel them to the interstellar medium, from which later new generations of stars are born. We can map this chemical evolution by analysing the atmospheric contents of old Galactic halo stars. I have done two such investigations. A vigourous debate is going on whether the oxygen-to-iron ratio varies strongly with the general metal-content of halo stars. In my first study, I made an abundance analysis of 43 halo stars, and found no support for such a variation. I have also found that there probably is a cosmic spread in the abundances of oxygen, magnesium, silicon, and calcium relative to iron for halo stars. This may be an indication that the halo was built up by subsystems with differences in the star formation rate. In my second study, I performed a thorough abundance analysis of the star HE0338-3945, which is strangely overabundant in both r- and s-elements. Several other stars have been found with abundance patterns curiously similar to this star, and I define new criteria for the class r+s stars. The abundance similarities among the r+s stars suggest a common formation scenario. However, as the s-elements usually are considered to be produced in binary systems of low mass, and r-elements in supernovae of Type II, this scenario is not obvious. In the article I discuss seven hypotheses, and several of them are dismissed.
|
234 |
Optical Turbulence Characterization for Ground-Based AstronomyHagelin, Susanna January 2010 (has links)
The optical turbulence, which creates perturbations of the wavefronts coming from the stars, is caused by small-scale fluctuations in the index of refraction of the atmosphere and is a problem for astronomers because it limits the maximum resolution of the ground-based telescopes. One way of identifying the best sites to build astronomical observatories, where the influence of the optical turbulence is as small as possible, is to use the standard meteorological parameters to get a first idea of the potential of a site. In the first part of this thesis the three sites on the Internal Antarctic Plateau that are the most interesting for astronomers (Dome A, Dome C and the South Pole) are investigated using the operational analyses of the ECMWF and a ranking of these three sites is presented. The second part of this thesis focuses on the ability of the mesoscale model Meso-NH to simulate the optical turbulence as well as the wind speed at Mt Graham (AZ, USA). A rich sample of measurements of the vertical distribution of the optical turbulence, the largest sample used in this type of study so far, is used to calibrate the Meso-NH model and to quantify its ability to simulate the optical turbulence. The measurements are distributed over different periods of the year thus making it possible to evaluate the performance of the model in different seasons. Both the vertical distribution of the optical turbulence and the astroclimatic parameters (seeing, wavefront coherence time and isoplanatic angle) are investigated. / Felaktigt tryckt som Digital Comprehensive Summaries of Uppsala Dissertations from the Faculty of Science and Technology 708
|
235 |
Investigating super-Eddington accretion flows in Ultraluminous X-ray sourcesGúrpide Lasheras, Andrés January 2018 (has links)
It is now widely known that most of the large galaxies we observe (e.g. the Milky Way) host in their center a supermassive black hole ($10^{6}-10^{9}$ $M_\odot$). Several relationships between the central black hole mass and the properties of the stars in the central part of the galaxy have been established in the past 3 decades indicating that the central black hole is able to efficiently structure the matter around it due to episodes of accretion of matter onto the black hole. Recent infrared and optical sky surveys have detected supermassive black holes with masses around $10^{8-9}$ $M_\odot$ when the universe was less than a tenth of its current age and current theories have difficulties explaining how such massive objects could have formed over such short timescales. The goal of the present work is to shed light on the properties of a still largely unknown extreme accretion regime, the so called super-Eddington accretion regime. If such accretion regime could be sustained over sufficient timescales, it could play an important role in both the rapid growth of supermassive black holes as well as its co-evolution with its host galaxy. The aim of this work is therefore to apply high resolution spectroscopy to Ultraluminous X-ray sources in order to identify narrow spectral features to derive constrains on the outflows expected from super-Eddington accreting sources using data from the XMM-Newton observatory. For this purpose I developed a framework to analyse low count background dominated spectra that uses a Monte Carlo approach to detect these narrow features. After analysis of the source Holmberg II X-1, I identify 7 unresolved discrete features with a 3$\sigma$ confidence level that can be tentatively identified with ionic species. Furthermore, the instrumental resolution allows us to put upper limits on the broadening of the lines. This findings will allow us to probe the properties of the outflows of the super-Eddington regime and by extending the analysis to other sources we will able to characterize the observational properties of this accretion regime.
|
236 |
Searching for Gamma Rays from Galaxy Clusters with the Fermi Large Area Telescope : Cosmic Rays and Dark MatterZimmer, Stephan January 2013 (has links)
In this licentiate thesis, I report a search for GeV γ rays towards the location of Galaxy clusters. I mainly discuss the results of a search for cosmic-ray (CR) induced γ-ray emission but also briefly elaborate on a related study, searching for Dark Matter (DM)-induced γ-ray emission from Galaxy clusters. In addition, I provide a detailed discussion on the analysis tools that were used and discuss some additional tests that are not included in the papers this licentiate thesis is based on. In a comprehensive search almost covering the entire sky, we find no statistically significant evidence for either DM or CR induced γ rays from galaxy clusters. Thus we report upper limits on CR quantities that exclude emission scenarios in which the maximum hadronic injection efficiency is larger than 21% and associated limits on the maximum CR-to-thermal pressure ratio, <XCR>. In addition, we update previous flux upper limits given a new set of modeling and taking the source extension into account. For a DM masses below 100 GeV, we exclude annihilation cross sections above ∼ 10−24 cm3 s−1 into bb. For decaying DM, we exclude decay times lower than 1027 s over the mass range of 20 GeV– 2 TeV.
|
237 |
Gravitational Waves and the Stability of Binary SystemsPereira, Rheymisson January 2017 (has links)
This project contains an exposition of the basics of General Relativity up to the study of Gravitational Waves. The goal is to apply this theory to understand binary systems, how they generate gravitational waves and the energy they lose in doing so. Gravitational waves have been a topic of interest in relativity ever since their theoretical prediction in 1916. Now the interest in the subject has been renewed since LIGO's announcement of the first detection of gravitational waves, proving once again the power of General Relativity. This topic is very promising because of its implications in the future of astronomy and cosmology as a new method to obtain information about our universe.
|
238 |
Identification of elements and molecules in the spectra of an M dwarf star using high resolution infrared spectroscopy.Pudas, Markus January 2017 (has links)
M dwarfs are abundant and long-lived stellar objects. The formation of planets around stars in stellar systems is believed to be metallicity dependent. To determine the metallicity with synthetic spectrum analysis, the elements producing the absorption lines ofthe spectra first have to be identified. The aim of this thesis is to identify and list the elements or molecules that produce the absorption lines in the spectra of Barnard's star. This thesis was done at the Division for Astronomy and Space Physics at Uppsala University. High resolution infrared spectral data recorded in the J band 1.1–1.4 μm was downloaded from the CRIRES-POP database. The data had to be wavelength corrected due to the effects of Doppler shift. A modified IDL program was used to read the data files,normalize the flux to unity and plot the spectra. This procedure was also done with the telluric spectra using data from a solar flux atlas. The IDL program plotted the normalized spectra together in the same plot. With this procedure the absorption features originating from the earth’s atmosphere could be identified and discarded. The analysis of the spectral lines resulted in wavelength values which were tested against the VALD3 database to determine what elements were possibly responsible for the absorption features. The results are presented in a line list. It can be used with other software programs to determine the metallicity. The identified elements and molecules agrees in part with earlier measurements of stellar spectra from M dwarf stars except for a number of lines where no matching elements were found in the VALD3 database. A line list with possible elements in the photosphere of Barnard’s star can be constructed from the spectra using high-resolution infrared spectroscopy. / M dvärgstjärnor är de mest förekommande stjärnorna i vår galax. De har en mycket långlivslängd, vissa tusen gånger längre än vår sol. Det finns teorier om att planetbildning runt stjärnor styrs av halten av ämnen som inte är väte eller helium. Denna halt kallas metallicitet. För att på konstgjord eller syntetisk väg bestämma metalliciteten i Barnard’s stjärna, en M dvärg, behöver de ämnen som bidrar till absorptionslinjerna i fotosfären först identifieras. Målsättningen med detta arbete var att identifiera de grundämnen och eventuella molekyler som skapar absorptionslinjerna i spektrumet till Barnard’s stjärna. Detta arbete utfördes på institutionen för fysik och astronomi. Metoden använde ett modifierat IDL program för att läsa och plotta data. Högupplöst infraröd spektraldata från Jbandet (1.1–1.4 μm) till Barnard’s stjärna hämtades från CRIRES-POP databasen och data för det telluriska spektrumet från en databas med telluriska linjer. Därefter plottades de samtidigt i ett våglängdsöverlappande normaliserat spektra. I programmet gick absorptionslinjer som inte hade sitt ursprung i jordens atmosfär att urskilja manuellt. Då våglängderna för absorptionlinjerna bestämts, matades värden in i databasen VALD3. Analysen av de returnerade värdena från VALD3 genererade en resultatlista med de mest sannolika elementen för de olika absorptionsvåglängderna. Resultatlistan kan användas som ingångsvärde till program som syntetiskt beräknar metalliciteten. Resultaten överensstämmer till viss del med tidigare mätningar. Slutsatsen är att metoden med högupplöst infraröd spektral data kan användas för att bestämma en lista med element och molekyler från fotosfären i Barnard’s stjärna.
|
239 |
High energy gamma ray emission and multi-wavelength view of the AGN PKS 0537-441Fransson, Emma January 2017 (has links)
This thesis describes the analysis of Very High Energy (VHE) emission from the Active Galactic Nucleus PKS 0537-441. It also aims to put the results in a wider context by implementing previous work done on this source. The data chosen for the analysis is provided by the Fermi-LAT satellite and covers the energy range between 300 MeV and 300 GeV. Initially a lightcurve of the received flux from the source was generated, containing data from August 2008 to April 2017, with a mean flux of 4∗10−8 photons per second per squared centimeter. The lightcurve contained sections of different flux intensities giving periods of special interest, such as a flaring period at August 2008 to August 2011, an enormous flare at April 2010 and a less active period between April 2013 - January 2016 that could be identified for further investigations. The differences in observed flux over time was tested and PKS 0537-441 was found to be a significantly variable source. Spectral Energy Distribution (SED) analysis was performed over both the entire period as well as over the selected subperiods and fitted against models using the tools provided by the Fermi Science Support Center (FSSC). The models used in the fitting was PowerLaw2, LogParabola and PLSuperExpCutoff and the best fit for the data was obtained from the PLSuperExpCutoff, except for the less intense period where the LogParabola gave the best fit. The result from the SED analysis was integrated with results from previous work done on the source, ranging over multiple wavelengths in order to get a SED which spanned over the entire electromagnetic spectrum. Finally, modeling of this multi wavelength SED was performed in order to obtain parameters for the physical processes involved in the creation of the radiation received from PKS 0537-441.
|
240 |
Metallicity determination of M dwarfsLindgren, Sara January 2017 (has links)
M dwarfs constitute around 70% of all stars in the local Galaxy. Their multitude together with their long main-sequence lifetimes make them important for studies of global properties of the Galaxy such as the initial mass function or the structure and kinematics of stellar populations. In addition, the exoplanet community is showing an increasing interest for those small, cold stars. However, very few M dwarfs are well characterized, and in the case of exoplanetary systems the stellar parameters have a direct influence on the derived planet properties. Stellar parameters of M dwarfs are difficult to determine because of their low surface temperatures that result in an optical spectrum dominated by molecular lines. Most previous works have therefore relied on empirical calibrations. High-resolution spectrographs operating in the infrared, a wavelength region less affected by molecular lines, have recently opened up a new window for the investigation of M dwarfs. In the two first papers of this thesis we have shown that we can determine the metallicity, and in some cases the effective temperature, using synthetic spectral fitting with improved accuracy. This method is time consuming and therefore not practical or even feasible for studies of large samples of M dwarfs. When comparing our results from the high-resolution studies with available photometric calibrations we find systematic differences. In the third paper we therefore used our sample to determine a new photometric metallicity calibration. Compared to previous calibrations our new photometric calibration shows improved statistical characteristics, and our calibration gives similar results as spectroscopic calibrations. In a comparison with theoretical calculations we find a good agreement of the shapes and slopes of iso-metallicity lines with our empirical relation. Applying the photometric calibration to a sample of M dwarfs with confirmed exoplanets we find a possible giant planet-metallicity correlation for M dwarfs.
|
Page generated in 0.0325 seconds