Spelling suggestions: "subject:"bthermal"" "subject:"3thermal""
1 |
Dynamique de la réponse optique non-linéaire ultra-rapide d'une assemblée de nanoparticules d'orGuillet, Yannick 12 December 2007 (has links) (PDF)
Les matériaux nanocomposites étudiés sont constitués de nanoparticules d'or dispersées aléatoirement au sein d'une matrice de silice. Ils possèdent une forte réponse optique non-linéaire, qui s'explique par la résonance de plasmon de surface (RPS). Lorsque la fraction volumique en or augmente, les interactions électromagnétiques ainsi que les échanges thermiques entre nanoparticules ne sont plus négligeables. L'étude expérimentale de leur influence peut se faire en utilisant des lasers impulsionnels.<br /><br />Nous rappelons tout d'abord les caractéristiques de la réponse optique linéaire de ces matériaux. Puis nous détaillons le modèle numérique qui permet de simuler leur réponse suite à une excitation subpicoseconde. Nous présentons ensuite le dispositif pompe-sonde femtoseconde résolu spectralement développé dans l'équipe pour réaliser les études expérimentales. Enfin, nous mettons en évidence un processus d'excitation sélective dû aux interactions électromagnétiques et dont l'influence domine celle des échanges thermiques entre nanoparticules.
|
2 |
Micro-ablation athermique de matériaux transparents par absorption multiphotonique avec une micro-puce laser amplifiée Nd : YAG à impulsions vertes sub-nanosecondes / Athermal micro-ablation of transparent materials by multiphoton absorption with an amplified Nd : Yag microchip laser generating green sub-nanosecond pulsesMhalla, Taghrid 02 October 2015 (has links)
Les microchip lasers à impulsions sub-nanosecondes peuvent être des alternatives intéressantes aux lasers à impulsions femtosecondes pour le micro-usinage des matériaux transparents par absorption multiphotonique. Ces lasers peuvent facilement atteindre les puissances crêtes nécessaires pour déclencher l'ablation de tous les matériaux, y compris les diamants, céramiques, plastiques, et des verres. En outre, ils sont de faible coût, avec un design compact et robuste. Dans cette thèse, un micro-chip laser Nd:YAG amplifié (532 nm, 300 ps) a été utilisé pour la micro-gravure et le marquage de différents types de matériaux transparents, comme le verre borosilicate D263, le verre BK7 et le thermoplastique SBS. L'analyse des résultats a montré un bon accord avec le modèle d'expulsion de matière suite à la génération d'un plasma provoqué par une absorption laser à deux photons. Une résolution sub-micronique de marquage a été obtenue à l'intérieur d'un verre de borosilicate. Des canaux microfluidiques pour capteurs optiques ont été gravés sur verre BK-7 comprenant des guides d'ondes réalisés par échange d'ionique. Des réseaux denses de micro-canaux ont été fabriqués à la surface de matériaux thermoplastiques avec une zone affectée par les effets thermiques limités à quelques micromètres. En conclusion, ce travail de thèse montre que l'utilisation de ce type de laser permet un micro-usinage de très haute résolution avec des effets thermiques limités. / Microchip lasers with sub-nanosecond pulses are attractive alternative to femtosecond lasers for micromachining in transparent materials by multiphoton absorption. These lasers can easily reach pulse peak powers that are needed to trigger ablation in all materials, including diamond, ceramics, plastics, and glasses. In addition, they are low cost with compact and rugged design. In this thesis, a microchip laser (532 nm, 300 ps) has been used for micro-engraving and marking different types of transparent materials such as borosilicate D263, BK7, and SBS thermoplastic. Experimental resultsare rationalized by the model of matter explosion following the plasma generation induced by the laser two-photon absorption. Sub-micron resolution embedded marking is demonstrated inside borosilicate glass. Micro fluidic channels for optical sensors are engraved on BK-7 glass with ion-doped waveguides. Arrays of dense micro channels are fabricated at the surface of thermoplastics with a zone affected by thermal effects limited to the micron range. In summary, this thesis demonstrates that this type of laser can be efficiently used for high-resolution micro-machining transparent materials with minimal thermal effects.
|
3 |
Reconfigurable integrated photonic circuits on siliconAlipour Motaallem, Seyed Payam 22 May 2014 (has links)
Integrated optics as a platform for signal processing offers significant benefits such as large bandwidth, low loss, and a potentially high degree of reconfigurability. Silicon (Si) has unique advantages as a material platform for integration, as well as properties such as a strong thermo-optic mechanism that allows for the realization of highly reconfigurable photonic systems. Chapter 1 is devoted to the discussion of these advantages, and Chapter 2 provides the theoretical background for the analysis of integrated Si-photonic devices. The thermo-optic property of Si, while proving extremely useful in facilitating reconfiguration, can turn into a nuisance when there is a need for thermally stable devices on the photonic chip. Chapter 3 presents a technique for resolving this issue without relying on a dynamic temperature stabilization process. Temperature-insensitive (or “athermal”) Si microdisk resonators with low optical loss are realized by using a polymer overlayer whose thermo-optic property is opposite to that of Si, and TiO2 is introduced as an alternative to polymer to deal with potential CMOS-compatibility issues. Chapter 4 demonstrates an ultra-compact, low-loss, fully reconfigurable, and high-finesse integrated photonic filter implemented on a Si chip, which can be used for RF-photonic as well as purely optical signal processing purposes. A novel, thermally reconfigurable reflection suppressor is presented in Chapter 5 for on-chip feedback elimination which can be critical for mitigating spurious interferences and protecting lasers from disturbance. Chapter 6 demonstrates a novel device for on-chip control of optical fiber polarization. Chapter 7 deals with select issues in the implementation of Si integrated photonic circuits. Chapter 8 concludes the dissertation.
|
4 |
Novel Optical Materials for Passive Photonic ApplicationsNamnabat, Soha, Namnabat, Soha January 2016 (has links)
Advances in photonic materials are critical to the progress of photonic devices and optical systems. Even though a variety of materials, e.g. semiconductors, oxide based glasses, and polymers exist which are being used for numerous applications, there is a growing need to develop and find new materials in order to push the limits we are bound by with conventional materials, in pursuit of higher performance, higher levels of integration and lower cost. In this realm, new material development has had a considerable impact, as it is the material properties (optical, thermal, mechanical, electrical, ...) in addition to their processing and compatibilities with standard processes that enable us the creation of entirely new devices or improve the performance of currently available optical devices. In this dissertation, I will demonstrate the application of two new materials for novel photonic components. In the first part of the dissertation, I discuss how a hybrid approach to the silicon photonics platform can reduce thermal sensitivity using sol-gel based inorganic-organic hybrid materials. The approach is to design the optical waveguide so that it maintains its performance in a passive manner in response to environmental temperature variations and, thus, does not need external temperature control resulting in reduced electrical power consumption. Sol-gel materials are well-known, but they haven’t been exploited like polymers and titanium dioxide to be cladding layers to enable athermal silicon waveguides. In this work I show their advantages with respect to previous materials that were employed for athermal microring resonators. I studied the thermal curing parameters of the sol-gel and its effect on thermal wavelength shift of the microring resonance. With this method, I was able to achieve a thermal shift down to -6.8 pm/°C for transverse electric (TE) polarization, as well as thermal shifts below 1 pm/°C for transverse magnetic (TM) polarization in the C band under different curing conditions, all while preserving high Q resonator performance. The results and methodology described opens a new and more manufacturable approach to attain athermal silicon photonic devices. In the second part of the dissertation, I introduced a new, sulfur rich, low cost copolymer material developed by our colleagues in the chemistry department. This copolymer has unique properties that conventional optical polymers, such as polymethylmethacrylate and polycarbonate, lack, while also having low cost. I demonstrated that these polymers have very good processing capabilities, being easily moldable to make free space optical elements and solution processable for use in integrated optics. I studied their linear and nonlinear optical properties, finding them to possess high refractive indices and transparencies over a wide range from 550 nm to 6 µm, except for a small region of absorption from 3-3.3 µm. Finally, I demonstrated that these new copolymers are suitable and economical alternative for shortwave and midwave infrared optics (SWIR and MWIR, respectively).
|
5 |
Impact Welding and Impulse Shape Calibration of Nickel and Titanium AlloysNirudhoddi, Bhuvi Swarna Lalitha January 2019 (has links)
No description available.
|
6 |
Correlation of optical anisotropy with structural changes in Ge2Sb2Te5Shanmugam, Janaki January 2018 (has links)
Ge<sub>2</sub>Sb<sub>2</sub>Te<sub>5</sub> (GST) is an established phase-change material that undergoes fast reversible transitions between amorphous and crystalline states with a high electro-optical contrast, enabling applications in non-volatile optical and electronic memories and optically-switchable structured metamaterials. This work demonstrates that optical anisotropy can be induced and recorded in pure and doped GST thin films using circularly polarised light (CPL), opening up the possibility of controlled induction of anisotropic phase transition in these and related materials for optoelectronic and photonic applications. While the amorphous-to-crystalline phase transition in GST has generally been understood to proceed via a thermal mechanism, significant optical anisotropy (measured by circular dichroism (CD) spectroscopy in this work) strongly suggests that there is an electronic athermal component of the phase change induced by the handedness of circularly polarised nanosecond laser pulses and implies the existence of chiral structures or motifs. Optically active and inactive regions in the films have also been studied using X-ray and electron diffraction and spectroscopic techniques in order to obtain a structural picture that can be correlated to the optical changes observed and the findings offer surprising evidence of the nature of the phase transition. Regions exhibiting higher CD signal intensities were found to be mostly amorphous with elemental phase separation observed within modified surface features. Several mechanisms are proposed for the observed phenomena, including the retention of chiral crystalline fragments in laser- irradiated and melt-quenched amorphous regions, which could explain the results of CD spectroscopy. This may be extended to other material systems and harnessed in potential metamaterials, plasmonics, photonics or chiroptical applications.
|
7 |
Optimisation d'un code de dynamique des dislocations pour l'étude de la plasticité des aciers ferritiques / Improvements on Dislocation Dynamics Codes for the study of irradiated RPV ferritic steel's plasticityGarcia Rodriguez, Daniel 15 February 2011 (has links)
Ces travaux de thèse s’inscrivent au sein d’une démarche multi-échelles visant à améliorer lacompréhension de la fragilisation par l’irradiation de l’acier de cuve. Dans ce cadre, nous nousintéressons à la description de la mobilité des dislocations dans la ferrite, l’une des entrées clépour les codes de dynamique de dislocations (DD). Nous présentons ainsi une revuebibliographique exhaustive des différentes théories et expressions de la mobilité, à partir delaquelle nous proposons une nouvelle expression pour les dislocations vis. Cette loi, utilisablepour la première fois dans le régime de transition ductile-fragile, permet de reproduire lesprincipales observations expérimentales disponibles à ce niveau. Finalement, nous montronsles améliorations apportées au code de DD Tridis BCC 2.0, qui intègrent la nouvelle loi demobilité avec une nouvelle gestion des segments de dislocation permettant de stabiliser etaccélérer des simulations complexes avec prise en compte du glissement dévié. / The present work is part of a larger multi-scale effort aiming to increase knowledge of thephysical phenomena underneath reactor pressure vessel irradiation embrittlement. Withinthis framework, we focused on the description of dislocation mobility in BCC iron, which is oneof the key inputs to dislocation dynamics (DD) simulation codes. An extensive bibliographicreview shows that none of the available expressions can deal with the ductile-fragile transitiondomain of interest. Here, a new screw mobility law able to reproduce the main experimentalobservations is introduced building on the previous models. The aforementioned law is usedtogether with an improved dislocations dynamics code Tridis BCC 2.0, featuring bothperformance and dislocations segments interaction management enhancements, that allowsfor complex DD simulations of BCC iron structures with cross-slip
|
Page generated in 0.0544 seconds