• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 1
  • Tagged with
  • 8
  • 8
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Population demography, distribution, and movement patterns of Atlantic and shortnose sturgeons in the Penobscot River Estuary, Maine /

Fernandes, Stephen J., January 2008 (has links)
Thesis (M.S.) in Ecology and Environmental Science--University of Maine, 2008. / Includes vita. Includes bibliographical references (leaves 82-87).
2

Life History Analysis of James River Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) with Implications for Management and Recovery of the Species

Balazik, Matthew 10 December 2012 (has links)
Sturgeon species (family Acipenseridae) are threatened globally due to habitat destruction, pollution, and overfishing. The Atlantic sturgeon Acipenser oxyrinchus oxyrinchus was listed as a federally endangered species in 2012. Atlantic sturgeon have a complex life history that utilizes a wide range of habitats. Timing of life history varies in different areas requiring each population to be studied. Very little work has been published on Atlantic sturgeon reproduction in the James River, Virginia. To aid the recovery of James River Atlantic sturgeon, aspects of life history need to be addressed. To increase understanding of Atlantic sturgeon life history a length at age model was created to show population structure and age of sexual maturity. Telemetry experiments were conducted to determine what types of boats are likely to cause boat strike mortalities of adult fish during a spawning season. Morphometrics, sperm characteristics, and telemetry data were used to determine if Atlantic sturgeon have a fall spawning season. Strontium/calcium ratio analysis was conducted on Atlantic sturgeon fin spines to better understand migration patterns. Cortisol levels were examined in Atlantic sturgeon exposed to MS222, electronarcosis or no anesthetic 1 and 24 hr after a small incision mimicking tag implantation. I also determined the feasibility of using electronarcosis in the field and the effect of salinity on electronarcosis. The length at age data show male Atlantic sturgeon beco,e sexually mature at age 10 y and females around age 15 y. Telemetry data showed that deep draft ocean-cargo ships are most likely responsible for boat strike mortalities and there is a greater chance of Atlantic sturgeon being hit in the narrow portion of the river. Electronarcosis is an effective anesthetic and has various attributes that make it better suited for field applications then frequently used chemical anesthetics. The data generated from this research will help management produce effective recovery plans and create a safer research environment for both the fish and researcher.
3

Population Demography, Distribution, and Movement Patterns of Atlantic and Shortnose Sturgeons in the Penobscot River Estuary, Maine

Fernandes, Stephen J. January 2008 (has links) (PDF)
No description available.
4

Effects of Hydraulic Dredging and Vessel Operation on Atlantic Sturgeon Behavior in a Large Coastal River

Barber, Michael R 01 January 2017 (has links)
The tidal James River, a focus of VCU's Atlantic Sturgeon program, supports both commercial shipping and hydraulic dredging. These anthropogenic threats present documented but preventable sources of mortality to the endangered species. Using three separate VEMCO Positioning System (VPS) receiver arrays, spatial data of previously-tagged fish were collected. ArcGIS and Programita software were used to analyze fish spatial distributions in the presence and absence of potential threats, using additional data including automatic identification system (AIS) vessel locations, vessel passages compiled using camera footage, and dredge records provided by the US Army Corps of Engineers. The data showed a change in distribution associated with vessels that varied according to river width but not vessel type. Dredging was associated with differences in spatial distribution, but more clearly for adults than sub-adults. The responses of Atlantic Sturgeon provide information necessary to propose potential threat mitigations, including seasonal restrictions for both vessels and dredging.
5

Effects of the Algal Toxin Microcystin on Fishes in the James River, Virginia

Haase, Maxwell D 01 January 2015 (has links)
With the global rise in frequency of harmful algal blooms in estuarine environments comes an increase in prevalence of toxic metabolites, such as microcystin (MC), that some of the cyanobacteria involved will produce. At high concentrations, MC may accumulate in consumer tissues and have deleterious effects on organisms; however impacts of the toxin on aquatic living resources at ecologically relevant concentrations have not been widely documented. We analyzed the effects of MC on juveniles of five fish species from the James River, Virginia to determine if MC has the potential to impede growth. Using three separate experimental approaches, it was shown that exposure to concentrations of the toxin currently observed in the James River estuary do not appear to significantly impact the growth or survivorship of tested fish species. Extraneous factors in parts of the study led to an inability to draw clear conclusions on mortality or growth impacts; however it is evident from the experiments that at least some of the fish species have biological mechanisms in place that allow them to effectively eliminate the toxin from their systems. An ability to extricate the toxin suggests the possibility for fishes to withstand MC exposures and sustain few negative health impacts at low MC concentrations.
6

Behavioral responses of sub-adult Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus) to electromagnetic and magnetic fields under laboratory conditions

McIntyre, Andrew, III 01 January 2017 (has links)
Electromagnetic fields (EMF) produced by high voltage (HV), submarine transmission cables leading from offshore wind energy generation facilities could affect foraging or migratory behaviors of electro-receptive fishes, including endangered Atlantic Sturgeon. However, no published studies have quantitatively evaluated the possible behavioral effects of EMF exposure on sturgeon during residence in coastal waters. This study evaluated behavioral responses by sub-adult Atlantic Sturgeon to electromagnetic and magnetic fields under controlled laboratory conditions. Fabricated EMF generators were used to emulate a range of field EMF conditions that migratory fishes could encounter in proximity to submarine HV sources. Sensor arrays and digital video recorders synoptically quantified EMF conditions and fish behaviors during experimental trials. This thesis will describe the unique, experimental EMF generator/sensor array, present results of the behavior study, and suggest implications of the findings for Atlantic Sturgeon management and conservation. 45 trials were conducted over the course of the study. Study fish were subjected to 3 different field strengths (5µT, 100 µT, 1000 µT), generated using both AC and DC current. Time spent in generated field area, number of passes through the field area, and swimming speed were used to quantify behavioral changes in test subjects. From the data collected and analyzed there was no evidence indicating a change in fish behavior due to the influence of field strengths, field orientations, or field types used during the study.
7

Essential Spawning Habitat for Atlantic Sturgeon in the James River, Virginia.

Austin, Geoffrey 03 August 2012 (has links)
Substrate composition plays a critical role in determining the spawning success of Atlantic sturgeon. A benthic analysis of the tidal freshwater portion of the James River, Virginia, was performed to locate and protect remaining sturgeon spawning habitat within the James River system. I modeled structural habitat, substrate distribution, and river bathymetry from Richmond, Virginia to the Appomattox River confluence. A classification model was developed to describe the dominant substrate type (mud/silt, sand, gravel, bedrock) using side scan sonar data collected from August 2011-Febuary 2012. River depth, bottom imagery, substrate density (hardness), and ground truth substrate samples were interpolated into a GIS model to spatially describe and quantify essential sturgeon spawning habitat. Finally, I attempted a change analysis of historical substrate composition throughout the study area. Gravel, cobble, and bedrock, swept clean of silt or mud, was deemed a hard bottom substrate suitable for spawning success. Mud and silt dominated the vast majority of river substrate, representing approximately 67 % of river bottom surveyed. Sand comprised 17 % of river bottom, gravel represented 11 % and bedrock represented 5 %. Sixteen percent of the reach was hard bottom habitat consisting of a bed substrate dominated by gravel, cobble, or bedrock. Regions of hard bottom habitat found at depths ≥ 10 m were selected to model essential sturgeon spawning habitat. The river bottom within the reach contained approximately 8 % essential spawning habitat. The majority of hard bottom habitat was located in major bends of the river where scouring occurs. The historical comparison of available hard bottom habitat identified a 28 % loss of hard bottom since 1853. The greatest losses in hard bottom occurred in the upper portions of the study area (55 % loss in hard bottom habitat). Hard bottom habitat lost in the lower portion of the study area was partially offset by the creation of new hard bottom habitat within the narrow channel cuts bypassing Jones Neck and Turkey Island. Historical comparison of the Hatcher Island, Turkey Island, and Jones Neck oxbows identified heavy siltation and reduced depths likely due to anthropogenic alterations in the meander bends linked to shipping channel creation. The altered flow regime has resulted in increased sedimentation and has drastically reduced available hard bottom substrate within the natural channel of Jones Neck and Turkey Island. The increased availability of hard bottom habitat within the confines of the shipping channel has indicated that the alteration of the river bottom, through flow modification and dredging practices, may have replaced a portion of lost historical spawning habitat. Fisheries managers could use the data from the substrate analysis to better understand and protect essential areas necessary for Atlantic sturgeon spawning success.
8

PROOF-OF-CONCEPT OF ENVIRONMENTAL DNA TOOLS FOR ATLANTIC STURGEON MANAGEMENT

Hinkle, Jameson 01 January 2015 (has links)
Abstract The Atlantic Sturgeon (Acipenser oxyrinchus oxyrinchus, Mitchell) is an anadromous species that spawns in tidal freshwater rivers from Canada to Florida. Overfishing, river sedimentation and alteration of the river bottom have decreased Atlantic Sturgeon populations, and NOAA lists the species as endangered. Ecologists sometimes find it difficult to locate individuals of a species that is rare, endangered or invasive. The need for methods less invasive that can create more resolution of cryptic species presence is necessary. Environmental DNA (eDNA) is a non-invasive means of detecting rare, endangered, or invasive species by isolating nuclear or mitochondrial DNA (mtDNA) from the water column. We evaluated the potential of eDNA to document the presence of Atlantic Sturgeon in the James River, Virginia. Genetic primers targeted the mitochondrial Cytochrome Oxydase I gene, and a restriction enzyme assay (DraIII) was developed. Positive control mesocosm and James River samples revealed a nonspecific sequence—mostly bacteria commonly seen in environmental waters. Methods more stringent to a single species was necessary. Novel qPCR primers were derived from a second region of Cytochrome Oxydase II, and subject to quantitative PCR. This technique correctly identified Atlantic Sturgeon DNA and differentiated among other fish taxa commonly occurring in the lower James River, Virginia. Quantitative PCR had a biomass detection limit of 32.3 ug/L and subsequent analysis of catchment of Atlantic Sturgeon from the Lower James River, Virginia from the fall of 2013 provided estimates of 264.2 ug/L Atlantic Sturgeon biomass. Quantitative PCR sensitivity analysis and incorporation of studies of the hydrology of the James River should be done to further define habitat utilization by local Atlantic Sturgeon populations. IACUC: AD20127

Page generated in 0.0462 seconds