• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • 1
  • 1
  • Tagged with
  • 4
  • 4
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Upper atmosphere tides and gravity waves at mid- and low-altitudes / by S.M. Ball

Ball, Susan Margaret January 1981 (has links)
Typescript (photocopy) / 1 v. (various paging) : ill. ; 30 cm / Title page, contents and abstract only. The complete thesis in print form is available from the University Library. / Thesis (Ph.D.)--University of Adelaide, Dept. of Physics, 1982
2

Upper atmosphere tides and gravity waves at mid- and low-altitudes /

Ball, Susan Margaret. January 1981 (has links) (PDF)
Thesis (Ph.D.) -- University of Adelaide, Dept. of Physics, 1982. / Typescript (photocopy).
3

Quarterdiurnal Tide in the Middle Atmosphere

Geißler, Christoph 27 April 2021 (has links)
In der mittleren und oberen Atmosphäre spielen atmosphärische solare Gezeiten eine wichtige Rolle für die Dynamik und den Vertikaltransport von Energie und Impuls aus der Stratosphäre. Angeregt werden sie primär durch Absorption solarer Strahlung in der Troposphäre und Stratosphäre. Dabei entsprechen die Perioden der solaren Gezeiten den harmonischen Anteilen der täglichen Variation solarer Strahlung. Mittlerweile sind die täglichen, halbtägigen und dritteltägigen Gezeiten relativ gut erforscht, was bei der vierteltägigen Gezeit nicht der Fall ist. Die Informationen über diese Gezeit sind bislang rudimentär vor allem bzgl. einer globalen Klimatologie als auch der Details über möglichen Anregungsmechanismen und Wechselwirkungen. Dies ist darauf zurückzuführen, dass die Amplituden sehr klein sind und eine hohe zeitliche Auflösung für die Analyse benötigt wird. Die vierteltägige Gezeit wurde bislang von bodengebundenen Instrumenten und mit Fernerkundungsgsmethoden beobachtet, welche bislang lediglich einen räumlich und zeitlich begrenzten Überblick über die vierteltägige Gezeit boten. Da es nicht möglich ist die Beiträge der einzelnen Anregungen zu messen, muss sich numerischer Modelle als mächtiges Werkzeug bedient werden. Mit numerischen Modellen ist es möglich die verschiedenen Anregungsmechanismen zu separieren und ihre Beiträge für die vierteltägige Gezeit zu analysieren. Modellstudien lieferten bislang kein umfassendes Bild der QDT und berücksichtigten auch keine vierteltägige Schwerwellenanregungen. Diese Arbeit soll das Wissen zu diesem Thema erweitern, indem ein nichtlineares, mechanistisches, globales Zirkulationsmodell genutzt wird. Es wird eine umfassende numerische Studie durchgeführt, um die Wichtigkeit und das Zusammenspiel der drei vierteltägigen Anregungsmechanismen zu untersuchen, das sind die direkte solare Anregung, nichtlineare Wechselwirkung zwischen Gezeiten und Schwerewellen-Gezeiten-Wechselwirkungen. Erstmalig werden Anregungsterme, die über die Erwärmungsraten hinausgehen, selbst analysiert und quantifiziert und die Wechselwirkungen der vierteltägigen Gezeiten aus den unterschiedlichen Quellen untersucht. Darüber hinaus werden verschiedene Gezeitenmoden untersucht, um Interaktionen der vierteltätigen Gezeit aus den unterschiedlichen Anregungsmechanismen zu identifizieren. Darüber hinaus werden mit Hilfe der theoretischen Hough-Moden diejenigen Moden der vierteltägigen Gezeit abgeleitet, die in den Modellsimulationen maßgeblich für die meridionale Struktur verantwortlich sind. Diese aufwändige und umfassende Modellstudie analysiert die Anregungsmechanismen und deren Interaktion der vierteltägigen Gezeit. Die Arbeit hilft somit das Verständnis über die Wellenausbreitung der mittleren Atmosphäre auf ein neues Niveau zu heben.:1. Tides in the Middle Atmosphere - An Introduction 2. Quarterdiurnal Solar Tides 2.1. Forcing of Quarterdiurnal Tides 2.1.1. Overview of the different Forcing Mechanisms 2.1.2. Theoretical Consideration of the Nonlinear Forcing Mechanism 2.2. Observations and Model Study of the QDT 2.3. Summary and Outlook 3. The Middle and Upper Atmosphere Model (MUAM) 3.1. Introduction 3.2. Numerical Properties 3.3. Model Physics 3.4. Parameterizations 3.5. Background Climatology 4. Mathematical and Numerical Methods 4.1. Fast Fourier Transform 4.2. Harmonic Analysis 5. MUAM: Sensitivity Studies 5.1. Influence of Horizontal Resolution on the Background Climatology and QDT amplitudes 5.2. Influence of the Initial Conditions on the Background Climatology and QDT amplitudes 5.3. Influence of temporal resolution on the Background Climatology and QDT amplitudes 6. MUAM: Climatology of the Quarterdiurnal Tide 6.1. Amplitudes 6.2. Phases and Vertical Wavelengths 6.3. QDT reconstruction with Hough modes 7. MUAM: The Quarterdiurnal Tide Forcing Mechanisms 7.1. The Quarterdiurnal Forcing Terms 7.2. Model Experiments and Single Forcing Mechanisms 7.2.1. The Solar Forcing 7.2.2. The Gravity Wave Forcing 7.2.3. The Nonlinear Forcing 7.2.4. No Gravity Wave Forcing 7.2.5. No Nonlinear Forcing 7.3. Hough modes in Model experiments 7.3.1. SOL Hough modes 7.3.2. GW Hough modes 7.3.3. NLIN Hough modes 7.3.4. Hough modes: Seasonal cycle 7.4. Nonlinear Tidal Interactions 7.4.1. Model run without SDT/SDT interaction 7.4.2. Model run without DT/TDT interaction 7.4.3. Model run without tide-tide interaction 7.5. Solar Tidal Interactions 7.6. Interactions of Different Forcing Mechanisms 7.6.1. Interaction between Nonlinear and Solar Forcing 7.6.2. Interaction between Gravity wave and Solar Forcing 7.7. Influence of Enhanced Forcing Mechanisms 7.7.1. Influence of Enhanced Solar Forcing Mechanisms 7.7.2. Influence of Enhanced Gravity Wave Forcing Mechanisms 7.7.3. Influence of Enhanced Nonlinear Forcing Mechanisms 8. Summary and Conclusion 9. Outlook / In the middle and upper atmosphere atmospheric solar tides play an important role in the dynamics and vertical transport of energy and momentum from the stratosphere. They are primarily excited by absorption of solar radiation in the troposphere and stratosphere. The periods of the solar tides correspond to the harmonic components of the daily variation of solar radiation. Meanwhile, the diurnal, semidiurnal and terdiurnal tides have been relatively well studied, which is not the case with the quarterdiurnal tide. The knowledge about this tide is so far rudimentary, especially with regard to global climatology and details of possible excitation mechanisms and interactions. This is due to the fact that the amplitudes are very small and a high temporal resolution is required for the analysis. The quarterdiurnal tide has been observed by ground-based instruments and remote sensing methods, which until now have only provided a spatially and temporally limited overview of the quarterdiurnal tide. Since it is not possible to measure the contributions of the individual excitations, numerical models must be used as a powerful tool. With the numerical models it is possible to separate the different excitation mechanisms and to analyse their contributions for the quarterdiurnal tide. Model studies so far did not provide a comprehensive picture of QDT and did not consider QDT gravity wave excitation. This work is intended to extend the knowledge on this topic by using a nonlinear, mechanistic, global circulation model. A comprehensive numerical study will be carried out to investigate the importance and the interaction of the three quarterdiurnal excitation mechanisms, i.e. direct solar excitation, nonlinear tidal interactions and gravity wave tidal interactions. For the first time, excitation terms beyond the heating rates will be analyzed and quantified and the interactions of the quarterdiurnal tides from different sources will be investigated. Furthermore, different tidal modes will be investigated to identify quarterdiurnal tide interactions from the different excitation mechanisms. Furthermore, the theoretical Hough modes are used to derive those quarterdiurnal modes that are significantly responsible for the meridional structure in the model simulations. This elaborate and comprehensive model study analyses the excitation mechanisms and their interaction of the quarter-day tide. The work thus helps to raise the understanding of wave propagation in the middle atmosphere to a new level.:1. Tides in the Middle Atmosphere - An Introduction 2. Quarterdiurnal Solar Tides 2.1. Forcing of Quarterdiurnal Tides 2.1.1. Overview of the different Forcing Mechanisms 2.1.2. Theoretical Consideration of the Nonlinear Forcing Mechanism 2.2. Observations and Model Study of the QDT 2.3. Summary and Outlook 3. The Middle and Upper Atmosphere Model (MUAM) 3.1. Introduction 3.2. Numerical Properties 3.3. Model Physics 3.4. Parameterizations 3.5. Background Climatology 4. Mathematical and Numerical Methods 4.1. Fast Fourier Transform 4.2. Harmonic Analysis 5. MUAM: Sensitivity Studies 5.1. Influence of Horizontal Resolution on the Background Climatology and QDT amplitudes 5.2. Influence of the Initial Conditions on the Background Climatology and QDT amplitudes 5.3. Influence of temporal resolution on the Background Climatology and QDT amplitudes 6. MUAM: Climatology of the Quarterdiurnal Tide 6.1. Amplitudes 6.2. Phases and Vertical Wavelengths 6.3. QDT reconstruction with Hough modes 7. MUAM: The Quarterdiurnal Tide Forcing Mechanisms 7.1. The Quarterdiurnal Forcing Terms 7.2. Model Experiments and Single Forcing Mechanisms 7.2.1. The Solar Forcing 7.2.2. The Gravity Wave Forcing 7.2.3. The Nonlinear Forcing 7.2.4. No Gravity Wave Forcing 7.2.5. No Nonlinear Forcing 7.3. Hough modes in Model experiments 7.3.1. SOL Hough modes 7.3.2. GW Hough modes 7.3.3. NLIN Hough modes 7.3.4. Hough modes: Seasonal cycle 7.4. Nonlinear Tidal Interactions 7.4.1. Model run without SDT/SDT interaction 7.4.2. Model run without DT/TDT interaction 7.4.3. Model run without tide-tide interaction 7.5. Solar Tidal Interactions 7.6. Interactions of Different Forcing Mechanisms 7.6.1. Interaction between Nonlinear and Solar Forcing 7.6.2. Interaction between Gravity wave and Solar Forcing 7.7. Influence of Enhanced Forcing Mechanisms 7.7.1. Influence of Enhanced Solar Forcing Mechanisms 7.7.2. Influence of Enhanced Gravity Wave Forcing Mechanisms 7.7.3. Influence of Enhanced Nonlinear Forcing Mechanisms 8. Summary and Conclusion 9. Outlook
4

Analysis of the Forcing Mechanisms of the Terdiurnal Solar Tide in the Middle Atmosphere

Lilienthal, Friederike 04 June 2019 (has links)
Atmospheric solar tides play an important role in the vertical transport of energy and momentum from the troposphere to the middle and upper atmosphere. They are primarily excited by the absorption of solar heating in the troposphere and stratosphere. The periods of solar tides are according to the harmonics of the diurnal solar radiation variations. While the diurnal and semidiurnal tides are relatively well investigated, the terdiurnal tide has gained less attention to date, especially with regard to its possible excitation mechanisms. These become more complex for higher harmonics because the direct solar forcing is smaller and further possible excitation mechanisms such as nonlinear tidal interactions, gravity wave-tide interactions or tidal-mean flow interactions come into play. The terdiurnal tide has been observed from various ground-based instruments and by remote sensing techniques, but these measurements only provide an overview of the total terdiurnal tide as a product of all forcing mechanisms. At present, it is not possible to measure the contribution from individual forcings. Therefore, numerical models provide a powerful tool to separate the different forcing mechanisms and to analyze their contribution and interplay. A few model studies exist about this topic but they do not provide a comprehensive picture, and they are partly contradicting. Possible reasons are the respective model features and setups or narrowly focused analyses. The terdiurnal gravity wave forcing, for example, has never been considered in these studies even though gravity waves are known to have a large impact on the middle atmosphere dynamics. To extend the knowledge of that topic, a nonlinear mechanistic global circulation model is used in this thesis. This is a comprehensive numerical study to investigate the relative importance of three different terdiurnal forcing mechanisms and their interplay, including the direct solar forcing, nonlinear tidal interactions and gravity wave-tide interactions. For the first time, the forcing terms itself are analyzed and quantified. Different tidal modes are correlated to identify tidal interactions. Model simulations are presented that show the contribution of individual forcings on the observed wave amplitude in the mesosphere and lower thermosphere. Finally, new coupling features between the different forcings are discovered that have not been reported before. All together, this modeling study is the most extensive and comprehensive analysis about the forcing mechanisms of the terdiurnal tide, and it helps to fill a significant gap in the understanding of wave propagation in the middle atmosphere.:Bibliographische Beschreibung Bibliographic Description Acronyms 1. Introduction 2. Terdiurnal Solar Tides 2.1. Review of the Climatology of Terdiurnal Tides 2.2. Forcing of Terdiurnal Tides 2.2.1. Theory of Forcing Mechanisms 2.2.2. Model Studies 2.3. Summary and Open Questions 3. The Middle and Upper Atmosphere Model (MUAM) 3.1. Overview 3.2. Numerical Properties 3.3. Dynamics 4. Climatology of the Terdiurnal Tide in MUAM 4.1. Amplitudes 4.2. Phases and Vertical Wavelengths 5. The Terdiurnal Forcing Mechanisms in MUAM 5.1. The Terdiurnal Forcing Terms – In-Situ Excitation 5.1.1. The Solar Forcing 5.1.2. The Gravity Wave Forcing 5.1.3. The Nonlinear Forcing 5.2. Nonlinear Tidal Interactions - Common Analysis Methods 5.2.1. The Wavelength Criterion 5.2.2. The Correlation Analysis 5.3. Propagating Terdiurnal Tides 5.3.1. The Removal of Excitation Mechanisms in a MUAM Simulation 5.3.2. Simulation Overview 5.3.3. Seasonal and Global Structure of the Terdiurnal Tide from Individual Forcing Mechanisms 5.3.4. Interactions Between Different Forcing Mechanisms 5.4. The Impact of Terdiurnal Forcing Terms on the Background Circulation 5.5. Summary of the Terdiurnal Forcing Mechanisms 6. Summary and Conclusion 7. Outlook References A. Appendix: MUAM Reference Simulation B. Appendix: MUAM Simulations with Removed Forcings Acknowledgements Curriculum Vitae Affirmation / Atmosphärische solare Gezeiten spielen eine bedeutende Rolle für den Vertikaltransport von Energie und Impuls aus der Troposphäre in die mittlere und obere Atmosphäre. Sie werden primär durch Absorption solarer Strahlung in der Troposphäre und Stratosphäre angeregt. Die Perioden der solaren Gezeiten entsprechen den harmonischen Anteilen der täglichen Variation solarer Strahlung. Während die täglichen und halbtägigen Gezeiten relativ gut erforscht sind, haben die dritteltägigen Gezeiten bisher weniger Aufmerksamkeit, insbesondere in Bezug auf ihre Anregungsmechanismen, auf sich gezogen. Diese werden für höhere harmoni-sche Anteile komplexer, da die solare Anregung geringer ist und weitere Anregungsmechanismen wie nichtlineare Wechselwirkungen zwischen Gezeiten untereinander, mit Schwerewellen oder mit der mittleren Strömung ins Spiel kommen. Die dritteltägigen Gezeiten wurden bereits vielfach von bodengebundenen Instrumenten und mit Fernerkundungsmethoden beobachtet, jedoch bieten diese Messungen lediglich einen Überblick über die gesamten dritteltägigen Gezeiten als Produkt aller Anregungsmechanismen. Bis heute ist es nicht möglich, die Beiträge einzelner Anregungen zu messen. Deshalb sind numerische Modelle ein mächtiges Werkzeug, diese verschiedenen Anregungen zu separieren und ihre Beiträge und ihr Zusammenspiel zu analysieren. Es gibt einige wenige Modellstudien zu diesem Thema, aber diese bieten kein umfassendes Bild und sind teilweise widersprüchlich. Mögliche Gründe sind die entsprechenden Modelleigenschaften und -einstellungen und die schmal fokussierte Analyse. So wurde z.B. die dritteltägige Schwerewellenanregung bisher nie in die Betrachtungen einbezogen, obwohl bekannt ist, dass Schwerewellen einen großen Einfluss auf die Zirkulation der mittleren Atmosphäre haben. Um das Wissen zu diesem Thema zu erweitern, wird in dieser Arbeit ein nichtlineares, mechanistisches, globales Zirkulationsmodell genutzt. Es handelt sich um eine umfassende numerische Studie, um die relative Wichtigkeit und das Zusammenspiel von drei dritteltägigen Anregungsmechanismen zu untersuchen: die direkte solare Anregung, nichtlineare Wechselwirkungen zwischen Gezeiten und Schwerewellen-Gezeiten-Wechselwirkungen. Zum ersten Mal werden die Anregungsterme selbst analysiert und quantifiziert. Verschiedene Gezeitenmoden werden korreliert, um Interaktionen zwischen Gezeiten zu identifizieren. Es werden Modellsimulationen vorgestellt, welche die Beiträge der einzelnen Anregungen zu den beobachteten Wellenamplituden in der Mesosphäre und unteren Thermosphäre zeigen. Schließlich werden neue Kopplungsmechanismen zwischen den verschiedenen Anregungen entdeckt, wovon zuvor noch nicht berichtet wurde. Zusammenfassend ist diese Modellstudie die aufwändigste und umfassendste Analyse zu den Anregungsmechanismen der dritteltägigen Gezeiten und sie hilft eine entscheidende Lücke zum Verständnis der Wellenausbreitung in der mittleren Atmosphäre zu füllen.:Bibliographische Beschreibung Bibliographic Description Acronyms 1. Introduction 2. Terdiurnal Solar Tides 2.1. Review of the Climatology of Terdiurnal Tides 2.2. Forcing of Terdiurnal Tides 2.2.1. Theory of Forcing Mechanisms 2.2.2. Model Studies 2.3. Summary and Open Questions 3. The Middle and Upper Atmosphere Model (MUAM) 3.1. Overview 3.2. Numerical Properties 3.3. Dynamics 4. Climatology of the Terdiurnal Tide in MUAM 4.1. Amplitudes 4.2. Phases and Vertical Wavelengths 5. The Terdiurnal Forcing Mechanisms in MUAM 5.1. The Terdiurnal Forcing Terms – In-Situ Excitation 5.1.1. The Solar Forcing 5.1.2. The Gravity Wave Forcing 5.1.3. The Nonlinear Forcing 5.2. Nonlinear Tidal Interactions - Common Analysis Methods 5.2.1. The Wavelength Criterion 5.2.2. The Correlation Analysis 5.3. Propagating Terdiurnal Tides 5.3.1. The Removal of Excitation Mechanisms in a MUAM Simulation 5.3.2. Simulation Overview 5.3.3. Seasonal and Global Structure of the Terdiurnal Tide from Individual Forcing Mechanisms 5.3.4. Interactions Between Different Forcing Mechanisms 5.4. The Impact of Terdiurnal Forcing Terms on the Background Circulation 5.5. Summary of the Terdiurnal Forcing Mechanisms 6. Summary and Conclusion 7. Outlook References A. Appendix: MUAM Reference Simulation B. Appendix: MUAM Simulations with Removed Forcings Acknowledgements Curriculum Vitae Affirmation

Page generated in 0.3713 seconds