• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 39
  • 21
  • 8
  • 3
  • 1
  • 1
  • 1
  • Tagged with
  • 82
  • 82
  • 82
  • 34
  • 32
  • 20
  • 18
  • 17
  • 16
  • 14
  • 14
  • 14
  • 13
  • 12
  • 11
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
71

Use of wind profilers to quantify atmospheric turbulence

Lee, Christopher Francis January 2011 (has links)
Doppler radar wind profilers are already widely used to measure atmospheric winds throughout the free troposphere and stratosphere. Several methods have been developed to quantify atmospheric turbulence with such radars, but to date they have remained largely un-tested; this thesis presents the first comprehensive validation of one such method. Conventional in-situ measurements of turbulence have been concentrated in the surface layer, with some aircraft and balloon platforms measuring at higher altitudes on a case study basis. Radars offer the opportunity to measure turbulence near continuously, and at a range of altitudes, to provide the first long term observations of atmospheric turbulence above the surface layer. Two radars were used in this study, a Mesosphere-Stratosphere-Troposphere (MST) radar, at Capel Dewi, West Wales, and the Facility for Ground Based Atmospheric Measurements (FGAM) mobile boundary layer profiler. In-situ measurements were made using aircraft and tethered-balloon borne turbulence probes. The spectral width method was chosen for detailed testing, which uses the width of a radar's Doppler spectrum as a measure of atmospheric velocity variance. Broader Doppler spectra indicate stronger turbulence. To obtain Gaussian Doppler spectra (a requirement of the spectral width method), combination of between five and seven consecutive spectra was required. Individual MST spectra were particularly non-Gaussian, because of the sparse nature of turbulence at its observation altitudes. The width of Gaussian fits to the Doppler spectrum were compared to those from the `raw' spectrum, to ensure that non-atmospheric signals were not measured. Corrections for non-turbulent broadening, such as beam broadening, and signal processing, were investigated. Shear broadening was found to be small, and the errors in its calculation large, so no corrections for wind shear were applied. Beam broadening was found to be the dominant broadening contribution, and also contributed the largest uncertainty to spectral widths. Corrected spectral widths were found to correlate with aircraft measurements for both radars. Observing spectral widths over time periods of 40 and 60 minutes for the boundary layer profiler and MST radar respectively, gave the best measure of turbulence intensity and variability. Median spectral widths gave the best average over that period, with two-sigma limits (where sigma is the standard deviation of spectral widths) giving the best representation of the variability in turbulence. Turbulent kinetic energies were derived from spectral widths; typical boundary layer values were 0.13 m 2.s (-2) with a two-sigma range of 0.04-0.25 m 2.s (-2), and peaked at 0.21 m 2.s (-2) with a two-sigma range of 0.08-0.61 m 2.s (-2). Turbulent kinetic energy dissipation rates were also calculated from spectral widths, requiring radiosonde measurements of atmospheric stability. Dissipation rates compared well width aircraft measurements, reaching peaks of 1x10 (-3) m 2.s (-3) within 200 m of the ground, and decreasing to 1-2x10 (-5) m 2.s (-3) near the boundary layer capping inversion. Typical boundary layer values were between 1-3x10 (-4) m 2.s (-3). Those values are in close agreement with dissipation rates from previous studies.
72

Ventilace městské zástavby v závislosti na jejím geometrickém uspořádání / Urban Ventilation Dependence on Geometric Configuration

Kukačka, Libor January 2018 (has links)
Title: Urban Ventilation Dependence on Geometric Configuration Author: RNDr. Ing. Libor Kukačka Department: Department of Atmospheric Physics Supervisor: prof. RNDr. Zbyněk Jaňour, DrSc., Academy of Sciences of the Czech Republic, Institute of Thermomechanics, v. v. i. Abstract: The main goal of the thesis is to investigate the impact of urban geometry on the urban ventilation using wind-tunnel modelling. To measure the pollutant transport, both advective and turbulent, within complex urban geometries with a high temporal resolution a special measurement method was developed. At first, the pollution of a simplified urban area was simulated by a ground-level point source and the ventilation of the intersection with respect to four wind directions was studied. Later, the pollution of other simplified and complex urban areas was simulated by a ground-level line source and the ventilation of three different street canyons with respect to wind direction perpendicular and oblique to their along-canyon axis was investigated. The clear impact of urban complexity and wind direction on street canyon ventilation is demonstrated at lateral and top openings of all investigated canyons and the intersection. Whilst the dominance of the pollutant advection is demonstrated at the eaves of pitched roofs, at the roof ridges...
73

Evaluation of a stochastic model of coherent turbulent structures for atmospheric particle deposition applications

Eriksson, Andreas January 2022 (has links)
In this thesis, we have evaluated a stochastic Lagrangian model for computing particle deposition rates with prospects to use for atmospheric deposition applications.  The model is one-dimensional and models the particle dynamics in the boundary layers near walls and obstacles by simulating the coherent turbulent structures and Brownian motion governing the wall-normal transport. The deposition model is used with a hybrid deterministic/stochastic particle dispersion model governing the dynamics in the turbulent bulk flow. We used a steady-state RANS k-ϵ turbulence model to simulate the turbulent fluid flow in a neutral atmospheric boundary layer (ABL) using the with inflow boundary conditions by Richards & Hoxey (1993). The turbulence model is solved with the SIMPLE algorithm using the OpenFOAM software. The mean-field characteristic of the turbulent flow in the computational domain is exported and used for the particle model. The particle model is a Lagrangian Langevin-type model, consisting of a system of stochastic differential equations. The particle model was solved using a weakly first order a-stable scheme. We evaluated the deposition model by computing the deposition rate for a range of particle sizes and compared our results with collected experimental wind tunnel data. The numerical experiment was done in a computational domain based on the ABL model by Hargreaves & Wright (2007), a rectangular domain with a logarithmic wind profile. We used a particle source near the inflow boundary with an instantaneously release at the initial time. Results showed disagreement with the experimental data and was only valid for medium sized particles. However, time restrictions led to the analysis being cut short and only a single simulation was conducted. A definite conclusion on the suitability of the method could not be made based solely on this single results. Some uncertainties were identified and discussed for further potential work on the evaluation of the method. However, one conclusion was drawn on the performance of the method. The computational cost was concluded to be too high with the first order particle scheme used and higher order schemes is required for any practical use of the method for atmospheric deposition applications.
74

A Comparison of Statistical Methods to Generate Short-Term Probabilistic Forecasts for Wind Power Production Purposes in Iceland / En jämförelse av statistiska metoder för attgenerera kortsiktiga probabilistiska prognoser för vindkraftsproduktion på Island

Jóhannsson, Arnór Tumi January 2022 (has links)
Accurate forecasts of wind speed and power production are of great value for wind power producers. In Southwest Iceland, wind power installations are being planned by various entities. This study aims to create optimal wind speed and wind power production forecasts for wind power production in Southwest Iceland by applying statistical post-processing methods to a deterministic HARMONIE-AROME forecast at a single point in space. Three such methods were implemented for a 22 month-long set of forecast-observation samples in 1h resolution: Temporal Smoothing (TS), Observational Distributions on Discrete Intervals (ODDI - a relatively simple classification algorithm) and Quantile Regression Forest (QRF - a relatively complicated Machine Learning Algorithm). Wind power forecasts were derived directly from forecasts of wind speed using an idealized power curve. Four different metrics were given equal weight in the evaluation of the methods: Root Mean Square Error (RMSE), Miss Rate of the 95-percent forecast interval (MR95), Mean Median Forecast Interval Width (MMFIW - a metric to measure the forecast sharpness) and Continuous Ranked Probability Score (CRPS). Of the three methods, TS performed inadequately while ODDI and QRF performed significantly better, and similarly to each other. Both ODDI and QRF predict wind speed and power production slightly more accurately than deterministic AROME in terms of their Root Mean Square Error. In addition to an overall evaluation of all three methods, ODDI and QRF were evaluated conditionally. The results indicate that QRF performs significantly better  than ODDI at forecasting wind speed and wind power at wind speeds above 13 m/s. Else, no strong discrepancies were found between their conditional performance. The results of this study are limited by a relatively scarce data set and correspondingly short time series. The results indicate that applying statistical post-processing methods of varying complexity to deterministic wind speed forecasts is a viable approach to gaining a probabilistic insight into the wind power potential at a given location.
75

Time-Resolved Adaptive Finite Element Simulations for Building Aerodynamics : A proof of concept on minimal computational resources / Tidsupplösta adaptiva finita elementsimuleringar för byggnadsaerodynamik : Ett koncepttest med minimala beräkningsresurser

van Beers, Linde January 2021 (has links)
The effect of building geometry on the wind environment of cities is such that it can cause problems like wind danger, discomfort and poor ventilation of airborne pollutants. Computational fluid dynamics (CFD) can play a role in assessing changes in wind environment caused by building projects before realisation at little cost. However, the current state-of-the-art methods, RANS and LES, force a steep trade-off between accuracy and computational cost, and neither method is truly predictive. Time-resolved adaptive direct finite element simulation (DFS) is a method for CFD that is predictive and automatically optimises the mesh for a goal quantity, making it both efficient and accurate. In this thesis, DFS was implemented in FEniCS and used on basic validation cases to provide a proof of concept for the use of this method in the building aerodynamics, on resources freely available to anyone. The results show that the method is accurate to within 10% of the validation data with respect to the goal quantity. Visually, the expected flow features are clearly identifiable. DFS was successfully applied to a relatively complicated building geometry, with a total computation time of about 120 core-hours. We conclude that DFS has significant potential as a method for evaluating urban wind environments. Furthermore, because of its ease of use and lack of parameters, DFS can play an important role in helping architects, designers and students understand the effect of urban geometries on the wind environment. This report provides a basis for further research on DFS for building aerodynamics, as validation on more diverse urban geometries is still necessary. / Effekten av byggnaders form och geometri är så viktig att den kan ge problem för ventilation av t.ex. föroreningar, för energieffektivitet, och för vindfaror med t.ex. hög vindhastihet som kan vara farligt eller skapa obehag. Beräkningsströmningsdynamik (CFD) kan ha en roll i bedömningen av byggnadsprojekt i ett tidigt skede till liten kostnad. Dock är de etablerade och ledande metodikerna, RANS och LES, inte prediktiva och tvingar fram en kompromiss mellan beräkningskosnad och noggrannhet. Vår metodik “Time-resolved adaptive direct finite element simulation” (DFS) är en metod för CFD som är prediktiv och automatiskt optimerar beräkningsnätet (och därmed beräkningskostnaden) för en given målkvantitet, som ger både effektivitet och noggrannhet. I denna avhandling implementerades DFS i FEniCS och användes i grundläggande valideringsfall för att ge ett proof of conceptför användning av denna metod i byggnadsaerodynamik, på resurser som är fritt tillgängliga för alla. Resultaten visar att metoden är korrekt inom 10% av valideringsdata med avseende på målkvantiteten. Visuellt är de förväntade flödesfunktionerna tydligt identifierbara. DFS applicerades framgångsrikt på en relativt komplicerad byggnadsgeometri med en total beräkningstid på cirka 120 kärntimmar, vilket är en försumbar kostnad. Vi drar slutsatsen att DFS har en betydande potential som metod för utvärdering av stadsvindmiljöer. Dessutom, på grund av dess användarvänlighet och frihet från parametrar, kan DFS spela en viktig roll för att hjälpa arkitekter, designers och studenter att förstå effekterna av stadsgeometrier på vindmiljön. Denna rapport ger en grund för vidare forskning om DFS för aerodynamik, eftersom validering av mer olika stadsgeometrier fortfarande är nödvändig.
76

Développement d’un modèle de simulation déterministe pour l’étude du couplage entre un écoulement atmosphérique et un état de mer / Development of a deterministic numerical model for the study of the coupling between an atmospheric flow and a sea state

Cathelain, Marie 04 January 2017 (has links)
La physique de la couche limite atmosphérique en domaine océanique est principalement régie par les processus couplés liés au vent, à l’état de mer local, et à des effets de flottabilité. Leur compréhension reste néanmoins parcellaire et leurs descriptions théoriques et stochastiques sont pour le moins lacunaires, lorsqu’elles ne sont tout simplement pas mises à mal par les rares observations. Dans un contexte d’exploitation croissante de la ressource éolienne offshore, la mise en place de méthodes numériques visant à une description plus fine des propriétés turbulentes de cette couche limite sera une étape déterminante dans la réduction des coûts et l’optimisation des structures pour des rendements de récupération d’énergie améliorés. Ainsi, un outil numérique a été mis en place afin d’étudier le couplage entre un écoulement atmosphérique et l’état de mer. Un code Large-Eddy Simulation massivement parallèle pour la simulation des écoulements atmosphériques incompressibles développé par P. Sullivan au National Center for Atmospheric Research est couplé à un code spectral d’états de mer non-linéaires développé au Laboratoire de recherche en Hydrodynamique, Energétique et Environnement Atmosphérique. De nombreuses configurations de vents et d’états de mer sont modélisées. On montre que les lois semi empiriques souvent utilisées pour représenter la distribution verticale de la vitesse moyenne du vent sont une bonne approximation dans les situations où un petit état de mer est soumis à un fort vent. Néanmoins, dans le cas de houles très rapides se propageant dans des zones de faible vent, la création d’un jet de vent par la houle invalide ces lois semi-empiriques. / Modelling the dynamic coupling of ocean-atmosphere systems requires a fundamental and quantitative understanding of the mechanisms governing the windwave interactions: despite numerous studies, our current understanding remains quite incomplete and, in certain conditions, sparse field observations contradict the usual theoretical and stochastic models. Within the context of a growing exploitation of the offshore wind energy and the development of met ocean models, a fine description of this resource is a key issue. Field experiments and numerical modelling have revealed that atmospheric stability and wave effects, including the dynamic sea surface roughness, are two major factors affecting the wind field over oceans. A numerical tool has been implemented in order to study the coupling between an atmospheric flow and the seastate. A massively parallel large-eddy simulation developed by P. Sullivan at the National Center for Atmospheric Research is then coupled to a High-Order Spectral wave model developed at the Hydrodynamics,Energetics & Atmospheric Environment Laboratory in Ecole Centrale de Nantes. Numerous configurations of wind and sea states are investigated. It appears that, under strongly forced wind conditions above a small sea state, the semi-empirical laws referred to as standards in the international guidelines are a good approximation for the vertical profile of the mean wind speed. However, for light winds overlying fast-moving swell, the presence of a wave induced wind jet is observed, invalidating the use of such logarithmic laws.
77

Stably stratified atmospheric boundary layer: study trough large-eddy simulations, mesoscale modelling and observations

Jiménez Cortés, Maria Antònia 12 December 2005 (has links)
La capa límit atmosfèrica és l'àrea directament influenciada per la presència de la superfície de la terra i la seva alçada és d'uns centenars de metres a uns pocs quilòmetres. Durant el vespre, el refredament radiatiu estratifica establement l'aire prop del sòl i es forma el que es coneix com a Capa Límit Estable (CLE). D'avui en dia, la CLE és un règim que encara no està prou ben caracteritzat. La turbulència, que no és homogènia ni isòtropa, i la gran importància dels efectes locals com l'orografia, entre d'altres factors, dificulten l'estudi d'aquest règim. Per aquest motiu, la CLE és objecte d'especial atenció, sobretot a l'hora de millorar la seva representació en models tant de temps com de clima.Aquest treball es centra en l'estudi de la CLE mitjançant 3 eines diferents: 1) simulacions explícites de grans remolins (més conegudes com a simulacions LES), per determinar el comportament dels moviments turbulents, on les resolucions són de l'ordre de metres; 2) simulacions mesoscalars, per caracteritzar els efectes locals, on les resolucions són de l'ordre de kilòmetres; 3) anàlisi de les observacions sota aquestes condicions per tal de caracteritzar i entendre millor els fenòmens observats.En primer lloc s'estudia el rang d'estabilitats a on el model LES, que considera la teoria de Kolmogorov per la dissipació de l'energia, funciona correctament. Els resultats del model són realistes tal com mostra la seva comparació amb les mesures de dues campanyes experimentals (SABLES-98 i CASES-99). Per explorar més a fons els resultats LES i per comparar-los amb les mesures s'han utilitzat les Funcions de Distribució de Probabilitat (PDF). Aquests resultats LES són també comparables als obtinguts amb altres models LES, tal com mostra la intercomparació de models LES, més coneguda com a GABLS.Un cop desenvolupades totes les eines necessàries es fa un LES d'un cas més realista, basat en les observacions d'un màxim de vent de capes baixes (més conegut com a Low-Level Jet, LLJ). L'anàlisi combinat dels resultats LES i les mesures permet entendre millor els processos de barreja que tenen lloc a través de la inversió. Finalment, la contribució dels efectes locals s'estudia mitjançant les simulacions mesoscalars, en aquest cas centrades a l'illa de Mallorca. Durant el vespre es veu com les circulacions locals es desenvolupen a les conques (de longitud al voltant de 25km), formant-se, per exemple, vents catabàtics o LLJ com l'estudiat anteriorment. En aquest cas les simulacions es verifiquen amb imatges de satèl·lit NOAA i observacions de les estacions automàtiques de mesures, donant resultats semblants. / The atmospheric boundary layer is the area directly influenced by the presence of the Earth's surface and its height is from hundreds of meters to few kilometres. During the night, the radiative cooling stratifies the layer close to the surface and it forms the Stably-stratified Atmospheric Boundary Layer (SBL). Nowadays, the SBL is a regime not well enough characterized, yet. Turbulence, which is not homogeneous either isotropic, and the great importance of the local effects, like the orography, among other factors, make the SBL be a difficult regime to study. Even so, the SBL is an object of special attention, especially when improving its representation in numerical prediction models or climate models.This work focuses on the study of the SBL through 3 different tools: 1) Large-Eddy Simulations (LES), to determine the turbulent motions, where the resolutions are about 1m; 2) Mesoscale simulations, to characterize the local effects, where resolutions are about 1km; 3) Analysis of the observations under these conditions in order to better characterize and understand the observed phenomena.In first place, it is studied the range of stabilities where the LES model, that considers the Kolmogorov theory for the dissipation of the energy, works correctly. The results are realistic as the comparison with measures from two experimental campaigns (SABLES-98 and CASES-99) shows. To explore the results more thoroughly, and to compare the LES results to the measurements, the Probability Density Functions (PDF) have been used. The LES results are also comparable to the ones obtained with other LES models, as the intercomparison of different LES models show, better known as GABLS.Then, a more realistic case is performed using the LES model, based on observations of a Low-Level Jet (LLJ). The combined inspection of the LES results and the observations allow to better understand the mixing processes that take place through the inversion layer. Finally, the contribution of the local effects is studied through a mesoscale simulation. Here the attention is focused on the Mallorca Island. During the night, the model is able to reproduce the local circulations is a basin of a characteristic size of 25km. The main features obtained previously from the LES of the LLJ are also reproduced by the mesoscale model. These runs are verified with NOAA satellite images and observations from the automatic surface weather stations, giving that the model is able to reproduce realistic results.
78

Sea Breeze Circulation in the Auckland Region:Observational Data Analysis and NumericalModelling

Khan, Basit Ali January 2010 (has links)
The main aim of this research is to improve our knowledge of the sea breeze circulation in the complex coastal environments, where more than one mesoscale circulations occur. Interaction of these circulations with each other and with external factors such as topographical features and large scale winds leads to pronounced changes in the thermodynamic structure of the boundary layer. The variations in sea breeze circulation also have distinct effect on the pollutant transport and dispersion mechanisms in the coastal urban areas. In this research, dynamic and thermodynamic characteristics of the sea breeze circulation and their associated air pollution potential have been investigated by utilizing observational data for two summer periods and numerical modelling techniques. Effect of some external factors such as gradient flow and terrain elevation has also been examined. Observed meteorological and air quality data was obtained from a number of monitoring sites within and around Auckland while Advanced Weather Research & Forecasting (WRF) and ‘The Air Pollution Model’ (TAPM) were employed to simulate meteorology and pollutant dispersion in Auckland. WRF is used to investigate the thermally induced mesoscale circulation while TAPM has been employed to examine the pollutant dispersion in the region. Both models were validated against observed data from six different sites within Auckland. Validation results of WRF and TAPM are also compared with surface meteorology. Validation and inter-comparison of the two models show that WRF performed better than TAPM for all the surface meteorology variables. WRF showed a positive bias in predicted winds speed and relative humidity and a cold bias in the near surface Temperature. TAPM on the other hand under-predicted surface winds, while near surface temperature and relative humidity are similar to WRF. Results show that the sea breeze occurred around 20% of the two summer periods of 2006 and 2007. Both observed data analysis and the numerical modelling results confirmed the existence of two thermally induced systems in the Auckland region. Bay breezes are initiated in the morning hours (0800 – 1000 hours) from small bodies of water (Manukau, Waitemata, and Kaipara Harbour, and along the Hauraki Gulf coastline), followed by mature sea breezes from the main bodies of water (Tasman Sea and larger Hauraki Gulf area) in the late morning. The cessation of sea breezes started after 1600 hours. Frequency of sea breeze days was the highest under coast-parallel gradient winds (southeast and northwest), with speeds < 6 m s-1. The predicted depth of the sea breeze inflow ranged between 200 and 600 m, while the depth of the return flow was in the range of 200 – 500 m. Sensible heat flux is an important control in the development of sea breeze over the region. Coastal mountain ranges helped early onset of the sea breeze, but also inhibited inland propagation. Strong jet-like westerly winds along the coastline near the Manukau Harbour are due partly to the narrow opening at the Manukau Head, reduced friction over the harbour water, and divergence of wind due to coastline shape. Gradient winds significantly affect the evolution of the sea breeze and modify many of its dynamics, such as the sea breeze inflow layer, return flow, inland penetration, sea breeze head, etc. Under northerly gradient flow northeast sea breeze lasts longer while under southerly gradient flow cessation of the westerly sea breeze was delayed. Over both east and west coasts, WRF predicted anticlockwise rotation, especially under easterly gradient wind conditions. However, inland stations near Manukau Harbour show partial and complete clockwise rotation, which is primarily due to orographic features of the region. The diurnal rotation of the sea breeze system may contribute to recirculation of pollutants in the morning hours under coast-parallel gradient wind conditions. Pollutants that are emitted during morning peak traffic hours and advected towards Manukau Harbour by the remnants of the land breeze may be returned by bay breezes in the mid morning hours. Mixed layer height over land before arrival of the sea breeze also varied a lot and ranged between 600 to 1400 m. A convective internal boundary layer (CIBL) forms in the surface layer after arrival of the sea breeze. The CIBL under coast parallel gradient winds was relatively shallow (200 – 400 m), while under coasts-normal gradient winds (southwest and northeast), the predicted depth was in the range of 400 to 500 m. However, the inland extent of the CIBL was greater under coast-normal winds, especially under south-westerly gradient winds. The ground level concentration of air pollutants thus can be increased during sea breeze inflow over the region. Both bay breeze and mature sea breeze contribute towards development, extent and strength of the sea breeze convergence zones (SBCZs). Gradient winds and terrain play an important role in the position and strength of SBCZs. Under strong south-westerly gradient flow, a SBCZ is formed along the eastern coastline, while under north-easterly gradient winds a SBCZ is formed along the west coastline. During coast-parallel gradient winds the SBCZ is formed in the middle of landmass, and is then gradually displaced eastward or westward depending on the balance between large scale PGF and surface friction effect. In addition to SBCZs, terrain and coastline-induced convergences were also evident. Higher ground level concentrations of pollutants are expected under coast-normal gradient winds, when SBCZs are formed in the middle of the land mass and the wind speed of the sea breeze inflow and the sea breeze front is relatively low. This may increase pollution concentration, especially in the evening hours, to unacceptable levels. Results of this research suggest that given the size, synoptic meteorology and specific geography of the region, significant recirculation of pollutants is not likely to happen to contribute to next day’s pollution. The pollutant concentration may increase in the SBCZs, but their ability to recirculate the pollutants requires more extensive research. A closed sea breeze circulation cell is unlikely to form in this region due to topographical influences and a strong gradient wind effect. The pollutant plume is expected to be advected in the return flow over the peaks of higher terrain and via the top of the convergence zones, but its remixing in the onshore flow is subject to many factors such as gradient wind speed and direction, direction of the return flow and nature (size and state) of the pollutant. In appropriate conditions, pollution levels may reach to unhealthy levels under coast-parallel gradient wind condition.
79

Establishment of an Experimental System in India to Measure the Mixing Ratio and Stable Isotopic Composition of Air CO2 & Observations from Urban and Marine Environments

Guha, Tania January 2013 (has links) (PDF)
The thesis presents observations on the CO2 mixing ratio and the carbon isotopic ratio (13C/12C i.e. δ13) of atmospheric CO2 from the Indian region, for the period 2008 - 2011. An experimental system was established at the Centre for Earth Sciences, Indian Institute of Science, Bangalore. The experimental protocol involves collection of air samples, extraction of CO2 from the air samples collected, and finally the measurement of the CO2 mixing ratio and isotopic ratios of the extracted CO2 using pressure gauge readings and the dual inlet peripheral of the isotope ratio mass spectrometer, IRMS MAT 253. The isotopic ratios measured are scaled to VPDB and corrected for their N2O contribution. The experimental set up is calibrated with primary carbonate standards (NBS19) and an air CO2 reference mixture. The analytical precision (reproducibility of paired samples) obtained for the atmospheric CO2 measurement is ±7 µ mol.mol-1, ±0.05‰ and ±0.17‰ for the mixing ratio, δ 13C and δ 18Oof atmospheric CO2 respectively. The present study lays emphasis on the CO2 mixing ratio and the δ 13C of atmospheric CO2. There are very few atmospheric CO2 monitoring stations in India. There exists only one long-term monitoring station, Cabo de Rama, on the west coast of India. Of late, a few new stations for measuring atmospheric trace gases have been in operation, with the major focus being on remote locations. Urban stations in India have never been monitored before for both the mixing ratio and the δ13C of atmospheric CO2 together. Monitoring urban stations in India is crucial today as they have become prime emitters of CO2 due to industrial activity. The emission from the sources varies seasonally and is influenced by factors like the Indian monsoon. The Indian subcontinent is surrounded by the Arabian Sea, the Indian Ocean and the Bay of Bengal which act differentially in terms of CO2 uptake or release. There is also a differential transport of CO2 to and from the open ocean. Thus, understanding the spatial pattern of CO2 in the marine region close to the Indian subcontinent is essential to understand the oceanic uptake/release of CO2. As part of this thesis, an urban area was monitored during 2008 - 2011 and the marine region was observed during the southwest monsoon of 2009. The temporal variation of the CO2 mixing ratio and δ13C of atmospheric CO2 was observed over an urban station, Bangalore (12° 58′ N, 77° 38′ E, masl= 920 m), India. Since Bangalore is one of the developing urban cities in India, it is interesting to monitor Bangalore air to understand the impact of anthropogenic emissions on atmospheric CO2 variability. The region has four distinct seasons, dry summer (March – May), southwest monsoon (June – September), post monsoon (October – November) and winter (December – February). Thus, it is also an ideal location to identify the effect of different seasons on the contribution of CO2 from various sources. Air samples were collected from the Indian Institute of Science campus, Bangalore, during 2008 - 2011. Both the diurnal and seasonal variations of the mixing ratio and δ13C of CO2 were observed in Bangalore. On the diurnal scale, a higher mixing ratio with lighter carbon isotopes (negative value) of δ13C of CO2 was recorded in the air-CO2 analyzed during the early morning compared to the late afternoon samples. The observations suggest that coal combustion, biomass burning and car exhausts are possible sources for CO2 identified based on the Keeling plot method. The nocturnal boundary layer (NBL) is found to influence the buildup of CO2 concentration in the early morning. The presence of the NBL in the early morning prevents the mixing of locally produced air with the CO2 from the free atmosphere above. Thus, the free air contribution of CO2 is reduced during the early morning rather than in the afternoon. The effect of seasonal variability in the height of the NBL on the air CO2 mixing ratio and the 13C of atmospheric CO2 were documented in the present study. On a seasonal scale, the free air contribution of CO2 was found to be higher during the southwest monsoon and winter compared to the dry hot summer and post monsoon period. On a seasonal time scale, a sinusoidal pattern in both the mixing ratio and δ13C has been recorded in the observations. While compared with nearby CO2 monitoring stations like the coastal station, Cabo de Rama, and the Open Ocean station, Seychelles, maintained by CSIRO Australia and NOAA-CMDL respectively, Bangalore recorded higher amplitudes of seasonal variation. Seasonal scale variations have revealed an additional source i.e. emission from the cement industry along with other sources identified from diurnal variations. The emission of CO2 from these different sources is not constant; rather it was found to vary with different seasons. The enhanced biomass burning during the dry season drives the δ13C of atmospheric CO2 towards more negative values, while during the southwest monsoon; the increased biosphere cover pushes the δ13C value of atmospheric CO2 towards positive values. The effect of La Nina in 2011 is also prominent in the observation. The study also intends to identify the spatial variability of both the mixing ratio and δ 13C air-CO2 close to the urban station, Bangalore based on the simultaneous sampling of air from three locations, Bangalore and two coastal stations, Mangalore and Chennai, which are equidistant from Bangalore. Samples were collected during the southwest monsoon and winter of 2010 - 2011. The observations documented a similar source of CO2 for all the three stations irrespective of the season. The factor responsible for the variability in the mixing ratio and the δ 13C of air CO2 among these stations is the differential transport of air from the marine region and its mixing with locally produced air. To identify the variability of atmospheric CO2 over the marine region, the atmosphere over the Bay of Bengal was monitored during the southwest monsoon of 2009 as part of the Continental Tropical Convergence Zone (CTCZ) Cruise expedition. The ocean surface water was also monitored simultaneously for the δ18O of water and the δ13C of dissolved inorganic carbon measurement. The combined observations of both air and water have shown the transport of continental air to the marine region and its uptake by the ocean during the period. The variability of atmospheric-CO2 is also observed during special events like the solar eclipse. During the annular solar eclipse of 15th January, 2010 an unusually depleted source value was identified for Bangalore air. The role of the boundary layer and a change in photosynthesis were identified as possible factors affecting air CO2 composition. In conclusion, the thesis has provided the first observations on air CO2 variability from an urban station in India. The observations have identified the possible sources of CO2 and have demonstrated the role of climatic phenomena like the Atmospheric Boundary Layer, Indian Monsoon, and La Nina in controlling the behaviour of sources and sinks and thus affecting the air CO2 variability over land and ocean. The seasonal scale variation based on day-to-day variability in the afternoon samples has revealed the important contribution of emissions from the cement industry whose contribution was absent in the diurnal variability. Thus, it is evident from this study that the timing of air sampling is crucial while identifying the sources. The per capita emission of individual urban stations in India is different; thus, it is essential to monitor more urban stations to identify sources and their different contributions. In future, the simultaneous monitoring of both continental and marine air over both the Arabian Sea and the Bay of Bengal will enable us to understand the long range transport of atmospheric CO2. The long term monitoring of CO2 from the Indian region can give us a better perspective on the effect of the Indian monsoon on air CO2 variability and vice versa.
80

Surface-atmosphere energy exchanges and their effects on surface climate and boundary layer dynamics in the forest-tundra ecotone in northwestern Canada

Graveline, Vincent 04 1900 (has links)
La région boréale arctique (RBA) couvre une vaste étendue qui lui confère un rôle important dans le système climatique mondial, par ses échanges d'énergie et de matière avec l'atmosphère. La température de l'air dans la région boréale arctique a augmenté à des taux disproportionnés par rapport à la moyenne mondiale, entraînant des changements dans la composition et la structure de la végétation. La RBA comprend l'écotone de la forêt boréale et de la toundra (EFT), qui s'étend sur plus de 10,000 km à travers l'hémisphère nord. La structure et la composition de la végétation varient considérablement à travers l’EFT. Du sud au nord, les arbres deviennent plus courts, plus dispersés et finalement absents. Ce gradient entraîne des variations dans la balance énergétique de surface. Ainsi, des changements dans la composition et la structure de la végétation dans l’EFT pourraient influencer le climat régional futur de ces régions. Ces changements régionaux pourraient se répercuter sur le climat mondial en interagissant avec le cycle du carbone par des changements dans les régimes de perturbations et la profondeur de la couche limite atmosphérique. L'objectif de cette étude était de développer un état des lieux de la variation latitudinale des interactions entre la surface et l’atmosphère et du climat régional à travers l’EFT dans le nord-ouest du Canada. Nous avons utilisé des mesures de covariance des turbulences provenant d’une forêt subarctique en marge de l’EFT et d’une toundra minérale caractérisant l’EFT du nord-ouest du Canada afin de quantifier les différences journalière et saisonnières des échanges d'énergie. Quatre paramètres de surface (albédo, conductance aérodynamique, conductance de surface et facteur de découplage) ont été examinés dans le but d’expliquer les différences dans la balance énergétique de surface. Des observations par radiosonde basées sur des campagnes de terrain et une expérience de modélisation de la couche limite atmosphérique ont été réalisées afin de discuter des conséquences potentielles des changements de végétation sur la dynamique de la couche limite atmosphérique (hauteur, température, humidité) et ses implications pour le climat régional. La forêt subarctique a démontré une meilleure capacité à transférer la chaleur vers l’atmosphère et une plus grande résistance à l'évapotranspiration, se traduisant par des conditions atmosphériques plus chaudes et sèches, spécialement au printemps. En été et automne, une conductance de surface plus élevée sur le site de la toundra s’est traduite par à une plus grande proportion de l'énergie utilisée pour humidifier l'atmosphère, résultant en une couche atmosphérique moins épaisse et un refroidissement régional du climat. La caractérisation des interactions entre la surface et l’atmosphère à travers l’EFT contribuera à améliorer les prédictions des effets des changements de végétation en cours sur le climat régional dans la région boréale arctique. / Considering its vast extent, the Arctic-boreal region (ABR) plays an important role in the global climate system through its exchange of energy and matter with the atmosphere. Air temperature across the ABR has been increasing at a higher rate compared to the global average and has led to changes in vegetation composition and structure across the ABR. The ABR includes the forest-tundra ecotone (FTE), spanning more than 10,000 km across the northern hemisphere. As the world’s longest transition zone, the FTE separates the boreal and Arctic biomes over a width of only a few tens to hundreds of kilometers. Vegetation composition and structure varies considerably across the FTE as trees become, from south to north, shorter and more stunted, sparser, and eventually, absent. The associated latitudinal gradient in surface properties results in corresponding latitudinal variations in the energy balance. Thus, changes in the latitudinal variation in surface properties and energy exchanges within the atmospheric boundary layer (ABL) may affect future regional climate across the FTE. The goal of this study was to develop a baseline understanding of the latitudinal variation in surface-atmosphere interactions and atmospheric boundary layer dynamics across the FTE in northwestern Canada. We used paired eddy covariance measurements of surface energy fluxes and supporting environmental measurements at a subarctic woodland (‘woodland’) and a mineral upland tundra site (‘tundra’) to quantify differences in daily and seasonal differences in woodland and tundra properties and energy exchanges. Four bulk surface parameters (albedo, aerodynamic conductance, surface conductance, and decoupling factor) were examined to explain drivers of those differences. Campaign-based radiosonde observations and numerical experiments using an ABL model were used to examine the impacts of a sparse tree cover on ABL dynamics (height, temperature, humidity) and their implications for surface climate compared to treeless tundra. The sparse tree cover at the woodland site showed an enhanced ability to transfer heat into the atmosphere and a higher resistance to evapotranspiration compared to tundra, leading to warmer and drier conditions especially in late winter and spring. In summer and fall, higher bulk surface conductance at the tundra site led to more energy being used to moisten the atmosphere, resulting in a shallower ABL and regional cooling of the atmosphere. Refined characterization of land surface-atmosphere interactions across the FTE will help to project the effect of ongoing vegetation changes on regional climate in the circumpolar Arctic-boreal region.

Page generated in 0.0722 seconds