Spelling suggestions: "subject:"atom chips"" "subject:"tom chips""
1 |
Cold atom microtraps above a videotape surfaceRetter, Jocelyn Anna January 2002 (has links)
No description available.
|
2 |
Bose-Einstein condensates on a magnetic film atom chipWhitlock, Shannon, n/a January 2007 (has links)
Atom chips are devices used to magnetically trap and manipulate ultracold atoms
and Bose-Einstein condensates near a surface. In particular, permanent magnetic film
atom chips can allow very tight confinement and intricate magnetic field designs while
circumventing technical current noise. Research described in this thesis is focused
on the development of a magnetic film atom chip, the production of Bose-Einstein
condensates near the film surface, the characterisation of the associated magnetic
potentials using rf spectroscopy of ultracold atoms and the realisation of a precision
sensor based on splitting Bose-Einstein condensates in a double-well potential.
The atom chip itself combines the edge of a perpendicularly magnetised GdTbFeCo
film with a machined silver wire structure. A mirror magneto-optical trap collects
up to 5 x 108 87Rb atoms beneath the chip surface. The current-carrying wires
are then used to transfer the cloud of atoms to the magnetic film microtrap and
radio frequency evaporative cooling is applied to produce Bose-Einstein condensates
consisting of 1 x 105 atoms.
We have identified small spatial magnetic field variations near the film surface that
fragment the ultracold atom cloud. These variations originate from inhomogeneity in
the film magnetisation and are characterised using a novel technique based on spatially
resolved radio frequency spectroscopy of the atoms to map the magnetic field landscape
over a large area. The observations agree with an analytic model for the spatial decay
of random magnetic fields from the film surface.
Bose-Einstein condensates in our unique potential landscape have been used as a
precision sensor for potential gradients. We transfer the atoms to the central region
of the chip which produces a double-well potential. A single BEC is formed far from
the surface and is then dynamically split in two by moving the trap closer to the
surface. After splitting, the population of atoms in each well is extremely sensitive to
the asymmetry of the potential and can be used to sense tiny magnetic field gradients
or changes in gravity on a small spatial scale.
|
3 |
Fluctuation-mediated interactions of atoms and surfaces on a mesoscopic scaleHaakh, Harald Richard January 2012 (has links)
Thermal and quantum fluctuations of the electromagnetic near field of atoms and macroscopic bodies play a key role in quantum electrodynamics (QED), as in the Lamb shift. They lead, e.g., to atomic level shifts, dispersion interactions (Van der Waals-Casimir-Polder interactions), and state broadening (Purcell effect) because the field is subject to boundary conditions. Such effects can be observed with high precision on the mesoscopic scale which can be accessed in micro-electro-mechanical systems (MEMS) and solid-state-based magnetic microtraps for cold atoms (‘atom chips’).
A quantum field theory of atoms (molecules) and photons is adapted to nonequilibrium situations. Atoms and photons are described as fully quantized while macroscopic bodies can be included in terms of classical reflection amplitudes, similar to the scattering approach of cavity QED. The formalism is applied to the study of nonequilibrium two-body potentials. We then investigate the impact of the material properties of metals on the electromagnetic surface noise, with applications to atomic trapping
in atom-chip setups and quantum computing, and on the magnetic dipole contribution to the Van der Waals-Casimir-Polder potential in and out of thermal equilibrium. In both cases, the particular properties of superconductors are of high interest. Surface-mode contributions, which dominate the near-field fluctuations, are discussed in the context of the (partial) dynamic atomic dressing after a rapid change of a system parameter and in the Casimir interaction between two conducting plates, where nonequilibrium configurations can give rise to repulsion. / Thermische und Quantenfluktuationen des elektromagnetischen Nahfelds von Atomen und makroskopischen Körpern spielen eine Schlüsselrolle in der Quantenelektrodynamik (QED), wie etwa beim Lamb-Shift. Sie führen z.B. zur Verschiebung atomarer Energieniveaus, Dispersionswechselwirkungen (Van der Waals-Casimir-Polder-Wechselwirkungen) und Zustandsverbreiterungen (Purcell-Effekt), da das Feld Randbedingungen unterliegt. Mikroelektromechanische Systeme (MEMS) und festkörperbasierte magnetische Fallen für kalte Atome (‘Atom-Chips’) ermöglichen den Zugang zu mesoskopischen Skalen, auf denen solche Effekte mit hoher Genauigkeit beobachtet werden können.
Eine Quantenfeldtheorie für Atome (Moleküle) und Photonen wird an Nichtgleichgewichtssituationen angepasst. Atome und Photonen werden durch vollständig quantisierte Felder beschrieben, während die Beschreibung makroskopischer Körper, ähnlich wie im Streuformalismus (scattering approach) der Resonator-QED, durch klassische Streuamplituden erfolgt. In diesem Formalismus wird das Nichtgleich-
gewichts-Zweiteilchenpotential diskutiert. Anschließend wird der Einfluss der Materialeigenschaften von normalen Metallen auf das elektromagnetische Oberflächenrauschen, das für magnetische Fallen für kalte Atome auf Atom-Chips und für Quantencomputer-Anwendungen von Bedeutung ist, sowie auf den Beitrag des magnetischen Dipolmoments zum Van der Waals-Casimir-Polder-Potential im thermisch-
en Gleichgewicht und in Nichtgleichgewichtssituationen untersucht. In beiden Fällen sind die speziellen Eigenschaften von Supraleitern von besonderem Interesse. Beiträge von Oberflächenmoden, die die Feldfluktuationen im Nahfeld dominieren, werden im Kontext des (partiellen) dynamischen Dressing nach einer raschen Änderung eines Systemparameters sowie für die Casimir-Wechselwirkung zweier metallischer Platten diskutiert, zwischen denen in Nichtgleichgewichtssituationen Abstoßung auftreten kann.
|
4 |
Bose-Einstein condensates in magnetic double well potentialsSchumm, Thorsten 20 February 2006 (has links) (PDF)
Ce manuscrit présente deux réalisations d'un double puit magnétique pour des condensats de Bose-Einstein (CBE) sure une puce atomique. Une approche utilise des pièges statiques, crées par des micro fils (en amènent ?) manipulant les atomes proche a la surface de la puce. Comme dans toute manipes, on observe une fragmentation du nuage atomique, quand on approche les atomes vers la structure piégeant. Cet effet était expliqué par une déviation du courant dans le fil à cause d'une rugosité des bords. Pour éviter la fragmentation, une nouvelle technique de fabrication (lithographie a faisceaux a électrons, évaporation d'or) a été utilisé pour créer des fils d'un section de 700nm et une qualité amélioré. Un CBE a été crée et chargé dans le double puit généré par la nano structure. On a testé le double puit comme séparatrice avec des atomes thermiques. Des nombreuses problèmes techniques nous empêchent pour le moment d'effectuer la manip avec un CBE.<br />La deuxième approche poursuit dans cette thèse combine des pièges magnétique statique avec un champ (RF) magnétique alternant et génère un double puit dans le potentiel habillé. Car ce schéma peut être réalisé loin de la surface de la puce, la fragmentation n'apparaisse pas et on a pu séparer un CBE en deux. Une interféromètre d'ondes a matière est réalisé en recombinant les deux nuages en expansion libre. La figure d'interférence permet de mesurer la phase relative, on trouve une distribution étroite de cette phase et donc la séparation est cohérente. L'évolution de la phase relative est mesurée pendant et après la séparation et contrôlé par déséquilibrant le double puit.
|
5 |
Fluctuations de densité dans des gaz de bosons ultafroids quasi-unidimensionnels / Density fluctuations in quasi-one dimensional ultracold bosonic gasesArmijo, Julien 02 May 2011 (has links)
Cette thèse présente la conception et l'implémentation d'une nouvelle génération de puces à atomes, ouvrant de nouvelles perspectives expérimentales dans des micropièges magnétiques très anisotropes. Les propriétés thermiques des puces en nitrure d'aluminium sont étudiées en détail. Le dispositif a été optimisé pour piéger de plus grands nombres d'atomes et améliorer la qualité de l'imagerie, notamment en fabriquant un miroir de planéité sub-λ/10 à la surface de la puce.Nous étudions des gaz quasi-1D grâce à des images in situ de profils fluctuants et des méthodes précises de calibration et d'analyse statistique. Nous mesurons des fluctuations non-gaussiennes, ce qui permet de tester sensiblement la thermodynamique du gaz et donne une mesure de corrélations à trois corps. Nous étudions précisément la transition de quasicondensation et mesurons pour la première fois sa loi d'échelle. En régime 3D, c'est une condensation transverse qui déclenche la quasicondensation longitudinale, tandis qu'en régime 1D, la formation d'un quasicondensat est gouvernée par les interactions répulsives et non par la dégénérescence quantique.Obtenant des températures record pour des gaz 1D, nous observons des fluctuations subpoissoniennes lorsque les corrélations atomiques sont déterminées, au moins localement, par les fluctuations quantiques qui dominent les fluctuations thermiques. Nous discutons également la thermalisation étonnamment rapide mesurée en régime 1D profond qui suggère que des collisions effectives à 3 corps brisent l'intégrabilité du système. / This thesis presents the design and implementation of a new generation of atom chips, that open novel experimental possibilities with very anisotropic magnetic microtraps. The thermal properties of aluminum nitride atom chips are studied in detail. We have optimized the set-up in order to trap more atoms and image the clouds as precisely as possible. In particular we have fabricated a miror of sub-λ/10 planeity on top of the chip surface.We study quasi-1D gases using in situ pictures of the fluctuating density pro_les and precise methods for their calibration and statistical analysis. We measure non-gaussian fluctuations, which provides a sensitive test of the thermodynamics of the system and gives a measure of three-body correlations. We study precisely the quasicondensation transition, measuring its scaling for the first time. In the 3D regime, a transverse condensation triggers the longitudinal quasicondensation. In the 1D regime, on the contrary, the appearance of a quasicondensate is governed by repulsive interactions only, and not by quantum degeneracy.Reaching record temperatures for 1D gases, we observe subpoissonian fluctuations which indicate that atomic correlations are determined at least locally by quantum rather than thermal fluctuations. We also discuss our observation of surprizingly e_fficient thermalization deep in the 1D regime, suggesting that e_ffective 3-body collisions break the integrability of the system.
|
6 |
Fermions and Bosons on an Atom ChipExtavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence.
This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate,
and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb
collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF ,
and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create
dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
|
7 |
Fermions and Bosons on an Atom ChipExtavour, Marcius H. T. 18 February 2010 (has links)
Ultra-cold dilute gases of neutral atoms are attractive candidates for creating controlled mesoscopic quantum systems. In particular, quantum degenerate gases of bosonic and fermionic atoms can be used to model the correlated many-body behaviour of Bose and Fermi condensed matter systems, and to study matter wave interference and coherence.
This thesis describes the experimental realization and manipulation of Bose-Einstein condensates (BECs) of 87Rb and degenerate Fermi gases (DFGs) of 40K using static and dynamic magnetic atom chip traps. Atom chips are versatile modern tools used to manipulate atomic gases. The chips consist of micrometre-scale conductors supported by a planar insulating substrate,
and can be used to create confining potentials for neutral atoms tens or hundreds of micrometres from the chip surface. We demonstrate for the first time that a DFG can be produced via sympathetic
cooling with a BEC using a simple single-vacuum-chamber apparatus. The large 40K-87Rb
collision rate afforded by the strongly confining atom chip potential permits rapid cooling of 40K to quantum degeneracy via sympathetic cooling with 87Rb. By studying 40K-87Rb cross-thermalization as a function of temperature, we observe the Ramsauer-Townsend reduction in the 40K-87Rb elastic scattering cross-section. We achieve DFG temperatures as low as T = 0.1TF ,
and observe Fermi pressure in the time-of-flight expansion of the gas. This thesis also describes the radio-frequency (RF) manipulation of trapped atoms to create
dressed state double-well potentials for BEC and DFG.We demonstrate for the first time that RF-dressed potentials are species-selective, permitting the formation of simultaneous 87Rb double-well and 40K single-well potentials using a 40K-87Rb mixture. We also develop tools to measure fluctuations of the relative atom number and relative phase of a dynamically split 87Rb BEC. In particular, we observe atom number fluctuations at the shot-noise level using time-of-flight absorption imaging. These measurement tools lay the foundation for future investigations of number squeezing and matter wave coherence in BEC and DFG systems.
|
Page generated in 0.0389 seconds