• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 3
  • 2
  • Tagged with
  • 10
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Time Resolved Single Molecule Spectroscopy of Semiconductor Quantum Dot/conjugated Organic Hybrid Nanostructures

Odoi, Michael Yemoh 01 September 2010 (has links)
Single molecule studies on CdSe quantum dots functionalized with oligo-phenylene vinylene ligands (CdSe-OPV) provide evidence of strong electronic communication that facilitate charge and energy transport between the OPV ligands and the CdSe quantum dot core. This electronic interaction greatly modify, the photoluminescence properties of both bulk and single CdSe-OPV nanostructure thin film samples. Size-correlated wide-field fluorescence imaging show that blinking suppression in single CdSe-OPV is linked to the degree of OPV coverage (inferred from AFM height scans) on the quantum dot surface. The effect of the complex electronic environment presented by photoexcited OPV ligands on the excited state property of CdSe-OPV is measured with single photon counting and photon-pair correlation spectroscopy techniques. Time-tagged-time-resolved (TTTR) single photon counting measurements from individual CdSe-OPV nanostructures, show excited state lifetimes an order of magnitude shorter relative to conventional ZnS/CdSe quantum dots. Second-order intensity correlation measurements g(2)(τ) from individual CdSe-OPV nanostructures point to a weak multi-excitonic character with a strong wavelength dependent modulation depth. By tuning in and out of the absorption of the OPV ligands we observe changes in modulation depth from g(2)(0) ≈ 0.2 to 0.05 under 405 and 514 nm excitation respectively. Defocused images and polarization anisotropy measurements also reveal a well-defined linear dipole emission pattern in single CdSe-OPV nanostructures. These results provide new insights into to the mechanism behind the electronic interactions in composite quantum dot/conjugated organic composite systems at the single molecule level. The observed intensity flickering, blinking suppression and associated lifetime/count rate and antibunching behaviour is well explained by a Stark interaction model. Charge transfer from photo-excitation of the OPV ligands to the surface of the CdSe quantum dot core, mixes electron/holes states and lifts the degeneracy in the band edge bright exciton state, which induces a well define linear dipole behaviour in single CdSe-OPV nanostructures. The shift in the electron energies also affects Auger assisted hole trapping rates, suppress access to dark states and reduce the excited state lifetime.
2

Electromagnetically Induced Exciton Dynamics and Bose-Einstein Condensation near a Photonic Band Gap

Yang, Shengjun 26 March 2012 (has links)
We demonstrate electromagnetically-induced anomalous quantum dynamics of an exciton in a photonic band gap (PBG) - quantum well (QW) hetero-structure. Within the engineered electromagnetic vacuum of the PBG material, the exciton can propagate through the QW by the emission and re-absorption of virtual photons in addition to the conventional electronic hopping mechanism. When the exciton wavevector and recombination energy coincide nearly with a photonic band edge, the exciton kinetic energy is lowered by 1-10meV through coherent radiative hopping. This capture of the exciton by the photonic band edge is accompanied by strong electromagnetic dressing in which the exciton's renormalized effective mass is 4-5 orders of magnitude smaller than in the absence of the PBG environment. This dressed exciton exhibits a long radiative lifetime characteristic of a photon-atom bound state and is robust to phonon-assisted, re-combinative decay. By inheriting properties of the PBG electromagnetic vacuum, the bound electron-hole pair becomes a stable, ultra-mobile quantum excitation. Unlike traditional exciton-polariton modes created by placing a QW in a one-dimensional optical cavity, our PBG-QW excitons exhibit strong coupling to optical modes and retain a long lifetime. This is crucial for unambiguous observation of quantum coherence effects such as Bose-Einstein condensation. We present a model for the equilibrium quantum statistics of a condensate of repulsively interacting bosons in a two-dimensional trap. Particle correlations in the ground state are treated exactly, whereas interactions with excited particles are treated in a generalized Bogoliubov mean-field theory. This leads to a fundamental physical picture for condensation of interacting bosons through an anharmonic oscillator ground state coupled to excited Bogoliubov quasiparticles in which the quantum number statistics of condensate particles emerges self-consistently. Our anharmonic oscillator model for the exciton ground state manifold goes beyond the conceptual framework of traditional Bogoliubov theory. Below the Bose-Einstein condensation temperature, our model exhibits a crossover from particle bunching to Poissonian statistics and finally antibunching as temperature is lowered or as the trapping area is decreased. When applied to Bose condensation of long-lived dressed excitons in a photonic band gap material, our model suggests that this system may serve as a novel tunable source for non-classical states of light.
3

Electromagnetically Induced Exciton Dynamics and Bose-Einstein Condensation near a Photonic Band Gap

Yang, Shengjun 26 March 2012 (has links)
We demonstrate electromagnetically-induced anomalous quantum dynamics of an exciton in a photonic band gap (PBG) - quantum well (QW) hetero-structure. Within the engineered electromagnetic vacuum of the PBG material, the exciton can propagate through the QW by the emission and re-absorption of virtual photons in addition to the conventional electronic hopping mechanism. When the exciton wavevector and recombination energy coincide nearly with a photonic band edge, the exciton kinetic energy is lowered by 1-10meV through coherent radiative hopping. This capture of the exciton by the photonic band edge is accompanied by strong electromagnetic dressing in which the exciton's renormalized effective mass is 4-5 orders of magnitude smaller than in the absence of the PBG environment. This dressed exciton exhibits a long radiative lifetime characteristic of a photon-atom bound state and is robust to phonon-assisted, re-combinative decay. By inheriting properties of the PBG electromagnetic vacuum, the bound electron-hole pair becomes a stable, ultra-mobile quantum excitation. Unlike traditional exciton-polariton modes created by placing a QW in a one-dimensional optical cavity, our PBG-QW excitons exhibit strong coupling to optical modes and retain a long lifetime. This is crucial for unambiguous observation of quantum coherence effects such as Bose-Einstein condensation. We present a model for the equilibrium quantum statistics of a condensate of repulsively interacting bosons in a two-dimensional trap. Particle correlations in the ground state are treated exactly, whereas interactions with excited particles are treated in a generalized Bogoliubov mean-field theory. This leads to a fundamental physical picture for condensation of interacting bosons through an anharmonic oscillator ground state coupled to excited Bogoliubov quasiparticles in which the quantum number statistics of condensate particles emerges self-consistently. Our anharmonic oscillator model for the exciton ground state manifold goes beyond the conceptual framework of traditional Bogoliubov theory. Below the Bose-Einstein condensation temperature, our model exhibits a crossover from particle bunching to Poissonian statistics and finally antibunching as temperature is lowered or as the trapping area is decreased. When applied to Bose condensation of long-lived dressed excitons in a photonic band gap material, our model suggests that this system may serve as a novel tunable source for non-classical states of light.
4

Probing Molecular Stoichiometry by Photon Antibunching and Nanofluidics Assisted Imaging in Solution

Cheng, Hao 18 May 2017 (has links)
No description available.
5

Fluctuations de densité dans des gaz de bosons ultafroids quasi-unidimensionnels / Density fluctuations in quasi-one dimensional ultracold bosonic gases

Armijo, Julien 02 May 2011 (has links)
Cette thèse présente la conception et l'implémentation d'une nouvelle génération de puces à atomes, ouvrant de nouvelles perspectives expérimentales dans des micropièges magnétiques très anisotropes. Les propriétés thermiques des puces en nitrure d'aluminium sont étudiées en détail. Le dispositif a été optimisé pour piéger de plus grands nombres d'atomes et améliorer la qualité de l'imagerie, notamment en fabriquant un miroir de planéité sub-λ/10 à la surface de la puce.Nous étudions des gaz quasi-1D grâce à des images in situ de profils fluctuants et des méthodes précises de calibration et d'analyse statistique. Nous mesurons des fluctuations non-gaussiennes, ce qui permet de tester sensiblement la thermodynamique du gaz et donne une mesure de corrélations à trois corps. Nous étudions précisément la transition de quasicondensation et mesurons pour la première fois sa loi d'échelle. En régime 3D, c'est une condensation transverse qui déclenche la quasicondensation longitudinale, tandis qu'en régime 1D, la formation d'un quasicondensat est gouvernée par les interactions répulsives et non par la dégénérescence quantique.Obtenant des températures record pour des gaz 1D, nous observons des fluctuations subpoissoniennes lorsque les corrélations atomiques sont déterminées, au moins localement, par les fluctuations quantiques qui dominent les fluctuations thermiques. Nous discutons également la thermalisation étonnamment rapide mesurée en régime 1D profond qui suggère que des collisions effectives à 3 corps brisent l'intégrabilité du système. / This thesis presents the design and implementation of a new generation of atom chips, that open novel experimental possibilities with very anisotropic magnetic microtraps. The thermal properties of aluminum nitride atom chips are studied in detail. We have optimized the set-up in order to trap more atoms and image the clouds as precisely as possible. In particular we have fabricated a miror of sub-λ/10 planeity on top of the chip surface.We study quasi-1D gases using in situ pictures of the fluctuating density pro_les and precise methods for their calibration and statistical analysis. We measure non-gaussian fluctuations, which provides a sensitive test of the thermodynamics of the system and gives a measure of three-body correlations. We study precisely the quasicondensation transition, measuring its scaling for the first time. In the 3D regime, a transverse condensation triggers the longitudinal quasicondensation. In the 1D regime, on the contrary, the appearance of a quasicondensate is governed by repulsive interactions only, and not by quantum degeneracy.Reaching record temperatures for 1D gases, we observe subpoissonian fluctuations which indicate that atomic correlations are determined at least locally by quantum rather than thermal fluctuations. We also discuss our observation of surprizingly e_fficient thermalization deep in the 1D regime, suggesting that e_ffective 3-body collisions break the integrability of the system.
6

Etude théorique des propriétés non-classiques de la lumière émise par des microcavités semiconductrices dans le<br />régime de couplage fort

Verger, Arnaud 25 September 2007 (has links) (PDF)
Ce mémoire de thèse a pour sujet l'étude théorique des propriétés non-classiques de la lumière émise par les microcavités semiconductrices dans le régime de couplage fort. Dans ce cadre, nous avons étudié ces structures comme des sources de photons uniques ou de photons jumeaux. Nous avons démontré dans un premier temps l'opportunité de créer une source de lumière de statistique sub-poisonnienne à partir de structures photoniques confinées. Pour des boîtes photoniques suffisamment étroites au sein de microcavités semiconductrices, on atteint un régime non-linéaire tel que l'introduction d'un seul photon suffit à décaler la résonance d'absorption de la structure de plus d'une largeur de raie, engendrant le phénomène de blocage quantique. Nous avons montré qu'en utilisant ce mécanisme de blocage, il est possible de créer une source de photons uniques originale, dont nous avons présenté les caractéristiques. Nous avons présenté les différents aspects de son fonctionnement tant en régime continu qu'en régime pulsé. Dans un deuxième temps, nous avons étudié les propriétés de corrélation entre paires signal et complémentaire émises par fluorescence paramétrique dans une configuration d'excitation symétrique dans une microcavité planaire. En utilisant l'algorithme de Monte Carlo quantique, nous avons montré qu'il existe des corrélations quantiques entre ces deux faisceaux. En étudiant l'impact du désordre (qui brise l'invariance par translation) de la cavité sur ces corrélations, nous montrons que celui-ci dégrade le caractère quantique des corrélations lorsque l'intensité de l'excitation est modérée. La dépendance en intensité des corrélations quantiques entre faisceaux a été caractérisée au-dessus et en-dessous du seuil d'instabilité paramétrique, nous permettant d'identifier le régime où le caractère non-classique du système est maximal.
7

Fluctuations de densité dans des gaz de bosons ultafroids quasi-unidimensionnels

Armijo, Julien 02 May 2011 (has links) (PDF)
Cette thèse présente la conception et l'implémentation d'une nouvelle génération de puces à atomes, ouvrant de nouvelles perspectives expérimentales dans des micropièges magnétiques très anisotropes. Les propriétés thermiques des puces en nitrure d'aluminium sont étudiées en détail. Le dispositif a été optimisé pour piéger de plus grands nombres d'atomes et améliorer la qualité de l'imagerie, notamment en fabriquant un miroir de planéité sub-λ/10 à la surface de la puce.Nous étudions des gaz quasi-1D grâce à des images in situ de profils fluctuants et des méthodes précises de calibration et d'analyse statistique. Nous mesurons des fluctuations non-gaussiennes, ce qui permet de tester sensiblement la thermodynamique du gaz et donne une mesure de corrélations à trois corps. Nous étudions précisément la transition de quasicondensation et mesurons pour la première fois sa loi d'échelle. En régime 3D, c'est une condensation transverse qui déclenche la quasicondensation longitudinale, tandis qu'en régime 1D, la formation d'un quasicondensat est gouvernée par les interactions répulsives et non par la dégénérescence quantique.Obtenant des températures record pour des gaz 1D, nous observons des fluctuations subpoissoniennes lorsque les corrélations atomiques sont déterminées, au moins localement, par les fluctuations quantiques qui dominent les fluctuations thermiques. Nous discutons également la thermalisation étonnamment rapide mesurée en régime 1D profond qui suggère que des collisions effectives à 3 corps brisent l'intégrabilité du système.
8

Observation du phénomène de blocage anormal de photon dans le domaine micro-onde / Anomalous photon blockade effect observation in the microwave regime

Vaneph, Cyril 30 November 2017 (has links)
Le phénomène de blocage de photon est observé lorsqu'un système à deux niveaux est fortement couplé à une cavité, limitant ainsi le nombre d'occupation des photons dans le mode de la cavité à zéro ou un. Ce phénomène est analogue au blocage de Coulomb en physique mésoscopique et a été observé en optique en couplant un atome unique ou une boîte quantique à une cavité. L'efficacité du blocage, mesurée par la fonction d'autocorrélation du deuxième ordre g2(0) augmente d'autant plus que la non-linéarité du système est grande devant la largeur de la cavité. Ce travail de thèse présente l'étude théorique et expérimentale d'un nouveau phénomène de blocage appelé "phénomène de blocage anormal de photon", dans le régime micro-onde. Ce phénomène apparaît dans un système photonique comprenant deux modes couplés, où au moins un des modes est non-linéaire. Par contraste avec le blocage de photon standard, le blocage anormal permet d'obtenir un blocage parfait (g2(0)=0) pour une non-linéarité arbitrairement faible. Nous présentons les propriétés théoriques du blocage anormal, et notamment sa formulation en termes d'états gaussiens. Afin de mettre en évidence ce phénomène, nous avons réalisé deux résonateurs supraconducteurs couplés, dont l'un est rendu non-linéaire et ajustable en fréquence par l'ajout d'un SQUID. Nous montrons les techniques de fabrication employées et la caractérisation des paramètres de notre échantillon. Enfin, nous présentons les techniques mises en œuvre pour mesurer g2(t). Cette mesure nous a permis de mettre en évidence le phénomène de blocage anormal et d'en étudier les propriétés en fonction des différents paramètres expérimentaux. / Photon blockade is observed when a two level system is strongly coupled to a cavity thus limiting the occupation number of the cavity mode to zero or one photon. This phenomenon is analogous to the Coulomb blockade effect in mesoscopic physics and has been observed in optics by coupling a single atom or a quantum dot to a cavity. The efficiency of the blockade, as measured by the second order auto-correlation function g2(0) increases with the non-linearity of the system in comparison to the cavity width. In this thesis, we present a theoretical and experimental study of a new blockade mechanism, called "anomalous photon blockade effect", in the microwave domain. This effect appears in photonics systems consisting of two coupled modes, where at least one of the mode is non-linear. In contrast to the standard blockade effect, perfect blockade (g2(0)=0) can be achieved with an arbitrary weak non-linearity strength. In the first part, we present a theoretical study of the anomalous blockade, and we use, in particular, a description in terms of gaussian states. To experimentally observe this effect, we have micro-fabricated two coupled superconductive resonators, where one of the resonator is frequency tunable and non-linear thanks to a SQUID. In the second part, we present the fabrication process and the characterization of our sample. Finally, we present the different techniques that we use to measure the auto-correlation function g2(τ). This measurement allowed us to demonstrate the anomalous blockade effect and to study its various properties as a function of the experimental parameters.
9

Spectroscopie d'absorption et d'émission des excitons dans les nanotubes de carbone / Absorption and emission spectroscopy of exciton in carbon nanotubes

Raynaud, Christophe 29 November 2018 (has links)
Les propriétés optiques de nanotubes de carbone sont décrites idéalement parla physique d’un objet unidimensionnel, donnant lieu notamment à l’apparition des excitons pour décrire les transitions optiques de ces objets. Les expériences d’optique(émission, absorption) réalisées sur ces objets à température ambiante et sur des ensemble d’objets ont permis de confirmer les prédictions théoriques basées sur la physique des objets 1D. Mais à température cryogénique et à l’échelle de l’objet unique,les propriétés optiques observées expérimentalement sont systématiquement très éloignées de celles d’un objet 1D. On peut notamment citer l’apparition de propriétés comme l’émission de photons uniques, qui a largement contribué à l’intensification de la recherche sur ces objets pour des applications en photonique quantique. Ces propriétés sont attribuées à la localisation des excitons le long de l’axe des nanotubes dans des puits de potentiel créés aléatoirement par l’interaction des nanotubes avec leur environnement. Les propriétés optiques sont alors proches de celles des objets0D, et sont fortement modulées par l’environnement. Les mécanismes et l’origine de la localisation et la connaissance physique de ces puits sont encore très limités. Ce travail montre d’une part le développement d’une technique d’absorption sur objet individuel et la caractérisation de sa sensibilité, et d’autre part l’étude statistique de l’émission de nanotubes à température cryogénique. Les résultats obtenus par une technique de super-résolution couplée à une imagerie hyper-spectrale montrent les grandeurs caractéristiques des puits de potentiels au sein de nanotubes individuels.Un dispositif expérimental de photoluminescence résolue en excitation implémenté au cours de ce travail a également montré une modification de l’état excitonique fondamental par l’environnement, avec l’apparition d’une discrétisation spatiale et spectrale de l’état fondamental délocalisé en une multitude d’états localisés. / The optical properties of carbon nanotubes are ideally described by the physicsof a one-dimensional object, giving rise in particular to the emergence of excitons todescribe the optical transitions of these objects. The optical experiments (emission,absorption) carried out on these objects at ambient temperature and on ensemblesconfirm the theoretical predictions based on the physics of 1D objects. But atcryogenic temperature and at the single emitter scale, the optical properties observedexperimentally are systematically different from those of a 1D object. One can citethe emergence of properties such as photon antibunching, which largely contributed tothe intensification of research on these objects for applications in quantum photonics.These properties are attributed to the localization of excitons along the nanotube axisin local potential wells (traps) created randomly by the interaction of nanotubes withtheir environment. The optical properties are then close to those of 0D objects, andare strongly modulated by the environment. The mechanisms and the origin of thelocalization and the physical knowledge of these traps are still very limited. This workshows on the one hand the development of an absorption setup on individual objectand the characterization of its sensitivity, and on the other hand the statistical studyof the emission of nanotubes at cryogenic temperature in a micro-photoluminescencesetup. The results obtained in the later setup by a super-resolution technique coupledwith hyper-spectral imaging show the characteristic quantities of potential wellswithin individual nanotubes. An experimental excitation-resolved photoluminescencesetup implemented during this work also showed a modification of the fundamentalexcitonic state by the environment, with the emergence of a spatial and spectraldiscretization of the delocalized ground state in a multitude of localized states.
10

Novel Methods for Controlled Self-Catalyzed Growth of GaAs Nanowires and GaAs/AlxGa1-xAs Axial Nanowire Heterostructures on Si Substrates by Molecular Beam Epitaxy

Tauchnitz, Tina 12 March 2020 (has links)
GaAs-based nanowires are attractive building blocks for the development of future (opto)electronic devices owing to their excellent intrinsic material properties, such as the direct band gap and high electron mobility. A pre-requisite for the implementation of novel functionalities on a single Si chip is the monolithic integration of the nanowires on the well-established Si complementary-metal-oxide-semiconductor (CMOS) platform with precise control of the nanowire growth process. The self-catalyzed (Ga-assisted) growth of GaAs nanowires on Si(111) substrates using molecular beam epitaxy has offered the possibility to obtain vertical nanowires with predominant zinc blende structure, while potential contamination by external catalysts like Au is eliminated. Although the growth mechanism is fairly well understood, control of the nucleation stage, the nanowire number density and the crystal structure has been proven rather challenging. Moreover, conventional growth processes are typically performed at relatively high substrate temperatures in the range of 560-630 °C, which limit their application to the industrial Si platform. This thesis provides two original methods in order to tackle the aforementioned challenges in the conventional growth processes. In the first part of this thesis, a simple surface modification procedure (SMP) for the in situ preparation of native-SiOx/Si(111) substrates has been developed. Using a pre-growth treatment of the substrates with Ga droplets and two annealing cycles, the SMP enables highly synchronized nucleation of all nanowires on their substrate and thus, the growth of exceptionally uniform GaAs nanowire ensembles with sub-Poissonian length distributions. Moreover, the nanowire number density can be tuned within three orders of magnitude and independent of the nanowire dimensions without prior ex situ patterning of the substrate. This work delivers a fundamental understanding of the nucleation kinetics of Ga droplets on native-SiOx and their interaction with SiOx, and confirms theoretical predictions about the so-called nucleation antibunching, the temporal anti-correlation of consecutive nucleation events. In the second part of this thesis, an alternative method called droplet-confined alternate-pulsed epitaxy (DCAPE) for the self-catalyzed growth of GaAs nanowires and GaAs/AlxGa1-xAs axial nanowire heterostructures has been developed. DCAPE enables nanowire growth at unconventional, low temperatures in the range of 450-550 °C and is compatible with the standard Si-CMOS platform. The novel growth approach allows one to precisely control the crystal structure of the nanowires and, thus, to produce defect-free pure zinc blende GaAs-based nanowires. The strength of DCAPE is further highlighted by the controlled growth of GaAs/AlxGa1-xAs axial quantum well nanowires with abrupt interfaces and tunable thickness and Al-content of the AlxGa1-xAs sections. The GaAs/AlxGa1-xAs axial nanowire heterostructures are interesting for applications as single photon emitters with tunable emission wavelength, when they are overgrown with thick lattice-mismatched InxAl1-xAs layers in a core-shell fashion. All results presented in this thesis contribute to paving the way for a successful monolithic integration of highly uniform GaAs-based nanowires with controlled number density, dimensions and crystal structure on the mature Si platform. / GaAs-basierte Nanodrähte sind attraktive Bausteine für die Entwicklung von zukünftigen (opto)elektronischen Bauelementen dank ihrer exzellenten intrinsischen Materialeigenschaften wie zum Beispiel die direkte Bandlücke und die hohe Elektronenbeweglichkeit. Eine Voraussetzung für die Realisierung neuer Funktionalitäten auf einem einzelnen Si Chip ist die monolithische Integration der Nanodrähte auf der etablierten Si-Metall-Oxid-Halbleiter-Plattform (CMOS) mit präziser Kontrolle des Wachstumsprozesses der Nanodrähte. Das selbstkatalytische (Ga-unterstützte) Wachstum von GaAs Nanodrähten auf Si(111)-Substrat mittels Molekularstrahlepitaxie bietet die Möglichkeit vertikale Nanodrähte mit vorwiegend Zinkblende-Struktur herzustellen, während die potentielle Verunreinigung der Nanodrähte und des Substrats durch externe Katalysatoren wie Au vermieden wird. Obwohl der Wachstumsmechanismus gut verstanden ist, erweist sich die Kontrolle der Nukleationsphase, Anzahldichte und Kristallstruktur der Nanodrähte als sehr schwierig. Darüber hinaus sind relativ hohe Temperaturen im Bereich von 560-630 °C in konventionellen Wachstumsprozessen notwendig, die deren Anwendung auf der industriellen Si Plattform begrenzen. Die vorliegende Arbeit liefert zwei originelle Methoden um die bestehenden Herausforderungen in konventionellen Wachstumsprozessen zu bewältigen. Im ersten Teil dieser Arbeit wurde eine einfache Prozedur, bezeichnet als surface modification procedure (SMP), für die in situ Vorbehandlung von nativem-SiOx/Si(111)-Substrat entwickelt. Die Substratvorbehandlung mit Ga-Tröpfchen und zwei Hochtemperaturschritten vor dem Wachstumsprozess ermöglicht eine synchronisierte Nukleation aller Nanodrähte auf ihrem Substrat und folglich das Wachstum von sehr gleichförmigen GaAs Nanodraht-Ensembles mit einer sub-Poisson Verteilung der Nanodrahtlängen. Des Weiteren kann die Anzahldichte der Nanodrähte unabhängig von deren Abmessungen und ohne ex situ Vorstrukturierung des Substrats über drei Größenordnungen eingestellt werden. Diese Arbeit liefert außerdem ein grundlegendes Verständnis zur Nukleationskinetik von Ga-Tröpfchen auf nativem-SiOx und deren Wechselwirkung mit SiOx und bestätigt theoretische Voraussagen zum sogenannten Nukleations-Antibunching, dem Auftreten einer zeitlichen Anti-Korrelation aufeinanderfolgender Nukleationsereignisse. Im zweiten Teil dieser Arbeit wurde eine alternative Methode, bezeichnet als droplet-confined alternate-pulsed epitaxy (DCAPE), für das selbstkatalytische Wachstum von GaAs Nanodrähten und GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen entwickelt. DCAPE ermöglicht das Nanodrahtwachstum bei unkonventionell geringeren Temperaturen im Bereich von 450-550 °C und ist vollständig kompatibel mit der Standard-Si-CMOS-Plattform. Der neue Wachstumsansatz erlaubt eine präzise Kontrolle der Kristallstruktur der Nanodrähte und folglich das Wachstum von defektfreien Nanodrähten mit phasenreiner Zinkblende-Struktur. Die Stärke der DCAPE Methode wird des Weiteren durch das kontrollierte Wachstum von GaAs/AlxGa1-xAs axialen Quantentopf-Nanodrähten mit abrupten Grenzflächen und einstellbarer Dicke und Al-Anteil der AlxGa1-xAs-Segmente aufgezeigt. Die GaAs/AlxGa1-xAs axialen Nanodraht-Heterostrukturen sind interessant für den Einsatz als Einzelphotonen-Emitter mit einstellbarer Emissionswellenlänge, wenn diese mit gitterfehlangepassten InxAl1-xAs-Schichten in einer Kern-Hülle-Konfiguration überwachsen werden. Alle Ergebnisse dieser Arbeit tragen dazu bei, den Weg für eine erfolgreiche monolithische Integration von sehr gleichförmigen GaAs-basierten Nanodrähten mit kontrollierbarer Anzahldichte, Abmessungen und Kristallstruktur auf der industriell etablierten Si-Plattform zu ebnen.

Page generated in 0.4555 seconds