• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 7
  • 6
  • 4
  • 2
  • Tagged with
  • 21
  • 21
  • 8
  • 7
  • 6
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Supersolidity in a dipolar quantum gas

Roccuzzo, Santo Maria 18 November 2021 (has links)
Ultracold quantum gases have nowadays become an invaluable tool in the study of quantum many-body problems. The high level of experimental control available on these systems and well established theoretical tools make ultracold quantum gases ideal platforms for quantum simulations of other systems currently inaccessible in experiments as well as for studies of fundamental properties of matter in the quantum degenerate regime. A key manifestation of quantum degeneracy in samples of ultracold bosonic neutral atoms is the formation of a Bose-Einstein condensate (BEC), a peculiar state of matter in which a macroscopic number of atoms occupy the same single-particle state. Bose-Einstein condensation occurs in extremely rarefied gases of bosonic atoms at temperatures around the nanoKelvin. At such temperatures, the equilibrium state of all known elements (except for helium) in ordinary conditions of density and pressure would be the solid phase. To obtain a BEC it is thus necessary to consider very dilute samples with a density of the order of 1014-1015 atoms/cm3, around eight orders of magnitude smaller then the density of ordinary matter. At such densities, the three-body recombination mechanisms responsible for the formation of molecules, that cluster to form solids, are suppressed. However, despite the extreme diluteness, two-body inter-atomic interactions play a prominent role in determining the physical properties of these systems. In the temperature and density regimes typical of BECs, the theoretical description of the system can be greatly simplified by noticing that the low-energy scattering properties of the real, generally involved, inter-atomic potential, can be perfectly reproduced by a simpler pseudo-potential, usually of the form of an isotropic contact repulsion, and described by a single parameter, the s-wave scattering length. Such parameter can even be tuned, in experiments, via the so-called Feschbach resonances. Despite its simplicity, this zero-range, isotropic interaction is responsible for an enormous variety of physical effects characterizing atomic BECs. This fact stimulated, over the last twenty years, the research of different possible types of interactions, that can eventually lead to the formation of new and exotic phases of matter. In this quest, the dipole-dipole interaction attracted great attention for different reasons. First, there are several experimental techniques to efficiently trap and cool atoms (or molecules) possessing a strong dipole moment. This led, for example, to the experimental realization of BECs of Chromium, Dysprosium and Erbium, which have, in the hyperfine state trapped for condensation, a magnetic dipole moment around ten times larger then the one typical of the particles in a BEC of alkali atoms. Moreover, since the dipole-dipole interaction is anisotropic and long-ranged, its low-energy scattering properties cannot be described by a simple short-range isotropic pseudo-potential. As a consequence, dipolar BECs show unique observable properties. The partially attractive nature of the dipole-dipole interaction can make a dipolar BEC unstable against collapse, similarly to the case of an ordinary (non-dipolar) BEC with negative scattering length. This happens, in particular, if a sample of magnetic atoms, polarized along a certain direction by some magnetic field, is not confined enough along such direction (for example via a harmonic potential). However, differently from ordinary BECs, where the collapse of the system is followed by a rapid loss of atoms and the destruction of the condensed phase, in the dipolar case such instability is followed by the formation of self-bound, (relatively) high density liquid-like droplets. If the geometry of the confinement potential allows it, the droplets spontaneously arrange into a regular, periodic configuration, in a sort of "droplet crystal". Moreover, by fine-tuning the interaction parameters, it is possible to achieve global phase coherence between these droplets. The spatially modulated, phase coherent system that forms is known as supersolid, and is a very peculiar system showing simultaneously the properties of a crystal and a superfluid. Ordinary mean-field theory, so successful in describing the vast phenomenology of ordinary BECs, fails in predicting the existence of the exotic phases of supersolids, quantum droplets and droplet crystals in a dipolar quantum gas. The state of the art description of dipolar BECs in such conditions is instead based on quantum fluctuations, taking into account the local density approximation of the first-order beyond-mean-field correction of the ground state energy of the system. This correction, known as the Lee-Huang-Yang correction, results in a repulsive energy term that balances the mean-field attraction at the relatively high densities that characterize the collapsing state. Using state-of-the-art simulation techniques, in this thesis I study the behavior of a dipolar Bose gas confined in a variety of trapping configurations, focusing on ground-state properties, elementary excitations, and the dynamical behavior under several kinds of external perturbations, focusing in particular on the supersolid phase. After reviewing the basic theory of dipolar Bose gases, setting the theoretical background, and describing the numerical techniques used, I first study the behavior of the dipolar Bose gas in an ideal situation, namely when the gas is confined in a harmonic trap along the polarization direction of the dipoles as well as one of the orthogonal directions. Along the unconfined direction, instead, I set periodic boundary conditions, in order to simulate the geometry of a ring. I study in particular the phase diagram of the system, focusing on how the ground state evolves from a superfluid, homogeneous along the ring, to the supersolid regime, and eventually to an array of independent droplets, by tuning a single interaction parameter, namely the s-wave scattering length. The superfluid phase is here characterized by the occurrence of a roton minimum in the energy-momentum dispersion relation. The energy of the roton, called roton gap, decreases when the s-wave scattering length of the system is decreased and the dipole-dipole interaction becomes the dominant interaction mechanism. When the roton minimum touches the zero-energy axis, the superfluid system is not stable anymore against mechanical collapse. The system thus tend to form denser clusters of atoms, regularly arranged in an equally-spaced array of droplets, whose relative distance is fixed by the inverse of the roton momentum. Such droplets are stabilized by quantum fluctuations, which enters in the energy functional of the system via the Lee-Huang-Yang correction. The density profiles of these droplets maintain a finite overlap if the scattering length is not too small. The phase characterized by overlapping, dense droplets of dipolar atoms is called supersolid. The main signatures of supersolid behavior, which in the thesis are shown to occur in this system, are 1. The occurrence of two Goldstone modes, associated with the two symmetries spontaneously broken in the supersolid, namely the symmetry for continuous translations, which is broken in favor of a discrete one, and the U(1) symmetry associated with Bose-Einstein condensation. 2. The manifestation of Non-Classical Rotational Inertia, due to the partially superfluid character of the system. Simply speaking, since the system behaves only partially as a superfluid, any rotational perturbation drags only the non superfluid part of the system. Hence, any measurement of the moment of inertia would give a value which is smaller then the one of a classical system with the same density distribution. Having studied the behavior of the dipolar Bose gas in a ring trap, I move on to explore possible manifestations of supersolid behavior in a fully trapped configuration, namely when the system is confined in an elongated (cigar-shaped) harmonic trap, with the long axis orthogonal to the polarization direction. Part of the results obtained in the three-dimensional harmonic trap have been compared with the first available experiments. The two key signatures of supersolid behavior, namely the occurrence of two Goldstone modes and Non-Classical Rotational Inertia, can be detected, in this case, by studying the low-energy collective oscillations of the system. First, a behavior equivalent to the one of the two Goldstone modes predicted in the ring trap, can be found in the axial compressional oscillations of the harmonically trapped system, which bifurcate at the superfluid-supersolid phase transition. When the system is driven through the supersolid-independent droplet transition, the lower-energy mode, associated with phase coherence, tends to disappear, while the higher energy mode, associated with lattice excitations, tends to assume a constant frequency. This behavior is specular to the one of the two Goldstone modes in the ideal system, and thus signal the presence of supersolidity in the trapped system. Important experimental confirmation of the predictions reported in the thesis have already been found. Instead, as shown in the thesis, a key manifestation non-classical inertia in a trapped dipolar supersolid can be found by studying the rotational oscillation mode known as scissors mode, whose frequency is directly related to the value of the moment of inertia (similar to the frequency of oscillation of a torsional pendulum for a classical system). Studying the behavior of the frequency of the scissors mode across the superfluid-supersolid-independent droplets phase transitions, I demonstrate the actual occurrence of non-classical inertia in a harmonically trapped dipolar supersolid. Another key manifestation of superfluidity in general many-body systems is given by the occurrence of quantized vortices, which I study in the case of the trapped dipolar Bose gas in a harmonic trap which is isotropic in the plan orthogonal to the polarization direction. I study in particular the size of the core of the vortex as function of the interaction parameters, showing that, in the superfluid phase, it increases as the superfluid-supersolid phase transition is approached. Then, in the supersolid phase, I show that quantized vortices settle in the interstices between the density peaks, and their size and even their shape are fixed respectively by the droplet distance and the shape of the lattice cell. I also study the critical frequency for the vortex nucleation under a rotating quadrupolar deformation of the trap, showing that it is related to the frequency of the lower-energy quadrupole mode, associated with the partial superfluid character of the system. In fact, in this configuration, the quadrupole mode splits into three modes, two of which can be associated to lattice excitations, and one to superfluid excitations. I find that the critical rotational frequency for vortex nucleation is related to the lower frequency quadrupole mode only, i.e. the one related to the superfluid character of the system. In ordinary BECs, when many vortices nucleates, they typically tend to arrange in a trinagular lattice. In a supersolid, however, vortices do not form on top of a uniform superfluid background, but rather on the background of the supersolid lattice, which is itself typically triangular. I thus show that the lattice formed by the vortices in the supersolid lattice is not triangular, but rather hexagonal, since the vortices settle in the interstices between the density peaks. Finally, I show that all these features can be observed in an expansion experiment. In the last part of the thesis, I study the behavior of the dipolar Bose gas confined by hard walls. In particular, I investigate the novel density distributions, with special focus on the effects of supersolidity. Differently from the case of harmonic trapping, in this case, the ground state density shows a strong depletion in the bulk region and an accumulation of atoms near the walls, well separated from the bulk, as a consequence of the competition between the attractive and the repulsive nature of the dipolar force. In a quasi two-dimensional geometry characterized by cylindrical box trapping, the consequence is that the superfluid accumulating along the walls forms spontaneously a ring shape, showing eventually also supersolidity. For sufficiently large values of the atom density, also the bulk region can exhibit supersolidity, the resulting geometry reflecting the symmetry of the confining potential even for large systems.
2

Graphene Casimir Interactions and Some Possible Applications

Phan, Anh Duc 01 January 2012 (has links)
Scientific development requires profound understandings of micromechanical and nanomechanical systems (MEMS/NEMS) due to their applications not only in the technological world, but also for scientific understanding. At the micro- or nano-scale, when two objects are brought close together, the existence of stiction or adhesion is inevitable and plays an important role in the behavior operation of these systems. Such effects are due to surface dispersion forces, such as the van der Waals or Casimir interactions. The scientific understanding of these forces is particularly important for low-dimensional materials. In addition, the discovery of materials, such as graphitic systems has provided opportunities for new classes of devices and challenging fundermental problems. Therefore, invesigations of the van der Waals or Caismir forces in graphene-based systems, in particular, and the solution generating non-touching systems are needed. In this study, the Casimir force involving 2D graphene is investigated under various conditions. The Casimir interaction is usually studied in the framework of the Lifshitz theory. According to this theory, it is essential to know the frequency-dependent reflection coefficients of materials. Here, it is found that the graphene reflection coefficients strongly depend on the optical conductivity of graphene, which is described by the Kubo formalism. When objects are placed in vacuum, the Casimir force is attractive and leads to adhesion on the surface. We find that the Casimir repulsion can be obtained by replacing vacuum with a suitable liquid. Our studies show that bromobenzene is the liquid providing this effect. We also find that this long-range force is temperature dependent and graphene/bromobenzene/metal substrate configuration can be used to demonstrate merely thermal Casimir interaction at room temperature and micrometer distances. These findings would provide good guidance and predictions for practical studies.
3

Bosons de Tonks et Girardeau dans un anneau à une dimension / Tonks Girardeau Bosons on a 1D ring trap

Schenke, Christoph 29 October 2012 (has links)
Cette thèse comprend une analyse d'un système de N bosons de masse m, à une dimension (1D). Vue des efforts expérimentaux récents et de la perspective d'étudier plusieurs effets quantiques intéressants, nous choisissons une géométrie circulaire avec une circonférence L. Un potentiel extérieur dépendant du temps nous permet d'introduire un mécanisme qui change l'état du moment angulaire des bosons. Ce potentiel est de la forme d'une fonction delta de Dirac qui se déplace le long de l'anneau à une vitesse v et la force de ce potentiel vaut U_0. Il peut être vu comme une barrière qui met les bosons en rotation. Les interactions entre les bosons sont des interactions de contact, décrites dans le modèle de Lieb et Liniger. Puisque le potentiel extérieur ne garde pas la symétrie de translation de L'Hamiltonien du système l'équation de Schrödinger n'est pas résoluble de manière exacte en utilisant un Ansatz de Bethe. Cependant, dans les limites des bosons libres et des bosons impénétrables de Tonks et Girardeau des méthodes alternatives existent pour trouver une solution exacte. Le but de cette thèse est de résoudre l'équation de Schrödinger dans ces cas limites. La solution nous permet d'accéder aux observables intéressantes concernant les propriétés superfluides des bosons libres et du gaz de Tonks. Nous effectuons une analyse du courant des particules, de ses fluctuations et de la force de traînée. Nous trouvons un comportement superfluide en-dessous d'une vitesse critique v_c=ħπ/(mL) de la barrière. Une oscillation du courant et la force de traînée est observée pour une vitesse de la barrière v=n*v_c, avec n un entier naturel. De plus, nous étudions la nature de l'état quantique du gaz de Tonks. Dans les analyses de la distribution des impulsions, de la fonction de Wigner et des images ``temps de vol'' pour une vitesse de la barrière v=n*v_c, on trouve que l'état du système est une superposition macroscopique de deux sphères de Fermi, l'une centrée autour de l'impulsion égale à zéro et l'autre autour de l'impulsion égale à 2q, avec q=mv/ħ. Cet état est un état fortement corrélé, non-classique car la fonction de Wigner atteint des valeurs négatives. / Recent experimental activities of boson trapping on a ring geometry open the way to explore a novel topology. We focus on a tight ring trap with strong transverse confinement leading to an effectively one-dimensional motion along its circumference. We consider a strongly interacting bose gas on the ring subjected to a localized barrier potential which is suddenly set into motion. The Bose-Fermi mapping allows to obtain an exact solution for the many-body wavefunction in the impenetrable-boson (Tonks-Girardeau) limit of infinitely strong interactions between the particles with arbitrary external potential, not treatable with the Bethe Ansatz. Using the time-dependent extension to BF mapping an exact solution for the dynamical evolution of the many-body wavefunction is obtained. The exact solution allows to calculate the particle current, the particle current fluctuations and the drag force acting on the barrier. In the weak barrier limit the stirring drives the system into a state with net zero current and vanishingly small current fluctuations for velocities smaller than v_c=ħπ/(mL), with m the atomic mass and L the ring circumference. The existence of a velocity threshold for current generation indicates superfluid-like behavior of the mesoscopic Tonks-Girardeau gas, different from the non-superfluid behavior predicted for the TG gas in an infinite tube. At velocities approaching integer multiples of v_c angular momentum can be transferred to the fluid and a nonzero drag force arises. At these velocities we predict the formation of a macroscopic superposition of a rotating and a nonrotating Fermi sphere of the mapped Fermi gas. We calculate the momentum distribution, time of flight images and the Wigner function of the Bose gas, the latter allowing to identify quantum interferences in the superposition. We find that the barrier velocity should be larger than the sound velocity for a better discrimination of the two components of the superposition.
4

Estudo de propriedades quânticas dos feixes sonda e de bombeio na transparência induzida por laser / Study quantum properties of probe and pump beams in laser-induced transparency.

Alzar, Carlos Leonardo Garrido 15 March 2002 (has links)
Este trabalho apresenta uma contribuição ao estudo das flutuações quânticas dos feixes sonda e de bombeio na condição de transparência induzida por laser. Com esse estudo conseguimos observar nas flutuações dos campos uma manifestação do caráter coerente da interação dos átomos com os feixes. Para alcançar nosso objetivo, derivamos a teoria do fenômeno da transparência induzida tratando ambos feixes dentro do formalismo quântico. Com tal formulação, encontramos que a condição de transparência induzida corresponde a um estado de equilíbrio dinâmico do sistema átomo - campo de bombeio - campo sonda onde, os átomos redistribuem os fótons entre os campos, correlacionando os mesmos e alterando, ao mesmo tempo, as propriedades estatísticas desses feixes. Utilizando dois critérios diferentes, mostrando que a correlação entre os feixes sonda e de bombeio é de natureza quântica, o que possibilita a aplicação desse sistema, por exemplo, na informação e computação quânticas. Os resultados experimentais obtidos confirmaram as previsões teóricas em relação às flutuações quânticas dos campos, e a existência de uma correlação entre eles. Trata-se da primeira investigação experimental de propriedades estatísticas dos campos em transparência induzida. A correlação de intensidade medida é o primeiro passo para a observação de emaranhamento entre feixes sonda e de bombeio na condiçào de transparência induzida. / In this work we presente a contribution to the study of quantum fluctuations of pump and probe filds in the Electromagnetically Induced Transparency (EIT) condition. We observed in the fields fluctuations evidence of the coherent character of the interaction between the atoms and the fields. To reach our purpose, the fields were treated quantum-mechanically in deriving the theory of the EIT phenomenon. Using this formulation, we concluded that the EIT condition corresponds to a state of dynamical equilibrium of the system atom pump field probe field, where the atoms redistribute the photons between both fields, correlating them and, at the same time, affecting their statistical properties. By means of two different criteria we showed that such a correlation is of quantum nature, making possible the application of this system in, for example, quantum information and quantum computation. The theoretical predictions were corroborated by our experimental results regarding the quantum fluctuations and the existence of a correlation between the pump and probe fields. This is the first experiment to investigate statistical properties of the fields in EIT. The intensity correlation measured is the first step towards the observation of entanglement between the fields.
5

Estudo de propriedades quânticas dos feixes sonda e de bombeio na transparência induzida por laser / Study quantum properties of probe and pump beams in laser-induced transparency.

Carlos Leonardo Garrido Alzar 15 March 2002 (has links)
Este trabalho apresenta uma contribuição ao estudo das flutuações quânticas dos feixes sonda e de bombeio na condição de transparência induzida por laser. Com esse estudo conseguimos observar nas flutuações dos campos uma manifestação do caráter coerente da interação dos átomos com os feixes. Para alcançar nosso objetivo, derivamos a teoria do fenômeno da transparência induzida tratando ambos feixes dentro do formalismo quântico. Com tal formulação, encontramos que a condição de transparência induzida corresponde a um estado de equilíbrio dinâmico do sistema átomo - campo de bombeio - campo sonda onde, os átomos redistribuem os fótons entre os campos, correlacionando os mesmos e alterando, ao mesmo tempo, as propriedades estatísticas desses feixes. Utilizando dois critérios diferentes, mostrando que a correlação entre os feixes sonda e de bombeio é de natureza quântica, o que possibilita a aplicação desse sistema, por exemplo, na informação e computação quânticas. Os resultados experimentais obtidos confirmaram as previsões teóricas em relação às flutuações quânticas dos campos, e a existência de uma correlação entre eles. Trata-se da primeira investigação experimental de propriedades estatísticas dos campos em transparência induzida. A correlação de intensidade medida é o primeiro passo para a observação de emaranhamento entre feixes sonda e de bombeio na condiçào de transparência induzida. / In this work we presente a contribution to the study of quantum fluctuations of pump and probe filds in the Electromagnetically Induced Transparency (EIT) condition. We observed in the fields fluctuations evidence of the coherent character of the interaction between the atoms and the fields. To reach our purpose, the fields were treated quantum-mechanically in deriving the theory of the EIT phenomenon. Using this formulation, we concluded that the EIT condition corresponds to a state of dynamical equilibrium of the system atom pump field probe field, where the atoms redistribute the photons between both fields, correlating them and, at the same time, affecting their statistical properties. By means of two different criteria we showed that such a correlation is of quantum nature, making possible the application of this system in, for example, quantum information and quantum computation. The theoretical predictions were corroborated by our experimental results regarding the quantum fluctuations and the existence of a correlation between the pump and probe fields. This is the first experiment to investigate statistical properties of the fields in EIT. The intensity correlation measured is the first step towards the observation of entanglement between the fields.
6

Propriedades dinâmicas em sistemas quânticos de muitos corpos / Dynamical properties in quantum many body systems

Carvalho, Julio Garcia 06 July 2006 (has links)
Orientador: Guillermo Gerardo Cabrera Oyarzun / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Fisica Gleb Wataghin / Abstract: Quantum spin systems are caracterized by huge spaces of states, whose dimensions grow exponentially with the particles number. If following the preparation of the initial state, the system is kept isolated from external variables, it will develop a unitary time evolution according to Schrödinger equation or to Liouville equation. The system is driven exclusively by quantum uctuations, whose origin is the Uncertainty Principle. The evolution of a quantum state or a physical observable or mathematical nonobservable operator mean values may involve all states of the whole space of states, or big or small fractions of the total number of states. The analysis of the relaxation of a spin system from an arbitrary initial state to the equilibrium has to cope in general with the difficulty of requiring an extraordinarily great number of eigenstates and eigenvalues. In this work the main interest is centered on the evolution of magnetization¿s Fourier components in low dimensional systems of spins 1/2, whose interactions be given by the exchange modeled by Heisenberg Hamiltonians with axial anisotopy, XXZ. Exact solutions, analitic or numeric, are obtained. This is the continuation of work done in our research group which dealt with XY Hamiltonian families. In the analysis of the systems with the Hamiltonian XXZ, it was specially analysed the subspace defined by null total magnetization and the subspace defined by one spin wave, where chains up to 14 and 1200 were treated, respectively. There are emergence of fast and slow relaxation processes, which depend on the interations and on the initial state, and which result from destructive or constructive quantum interferences. Connections between the presence of those processes and the energy spectrum structure is discussed. Finally, the time evolution of some measures of global entanglement from initial states in the subspace of one spin wave are analised: the considered dynamics creates global entanglement until each entanglement measure reaches a saturation / Made available in DSpace on 2018-09-24T18:24:44Z (GMT). No. of bitstreams: 1 Carvalho_JulioGarcia_D.pdf: 5851086 bytes, checksum: fe9467d4e143df319d98e75ddb334401 (MD5) Previous issue date: 2006 / Resumo: Os sistemas quânticos de spin são caracterizados por espaços de estados muito grandes, cujas dimensões crescem exponencialmente com o número de partículas. Se após a preparação do estado inicial, o sistema for mantido isolado de variáveis externas, desenvolve-se uma evolução temporal unitária prescrita pela equação de Schrödinger ou pela equação de Liouville. O sistema é movido exclusivamente por flutuações quânticas, as quais têm sua origem no Princípio da Incerteza. A evolução de um estado quântico ou de valores médios de observáveis físicos ou de operadores matemáticos não observáveis pode envolver todos os estados do espaço de estados, ou frações grandes ou pequenas do número total de estados. A análise da relaxação de um sistema de spins desde um estado inicial arbitrário até o equilíbrio apresenta a dificuldade de requerer em geral um número extraordinariamente grande de auto-estados e autovalores. Neste trabalho o maior interesse está na evolução das componentes de Fourier da magnetização em sistemas de baixa dimensão espacial, com spins 1/2 e cujas interações sejam dadas pela troca modelada por Hamiltonianos de Heisenberg com anisotropia axial, XXZ. Serão obtidas soluções exatas: numéricas ou analíticas. A motivação proveio de trabalhos anteriores realizados no grupo de pesquisa referentes a famílias do Hamiltoniano XY. Ao se considerar o Hamiltoniano XXZ, analisou-se especialmente o subespaço definido por magnetização total nula e o subespa¸ co de uma onda de spin, onde trataram-se cadeias com até 14 e 1200 sítios, respectivamente. Há emergência de processos rápidos e lentos de relaxação, os quais dependem das interações e do estado inicial, e resultam de interferência quântica destrutiva ou construtiva. Serão discutidas conexões entre a presença desses processos e a estrutura do espectro de energia. Finalmente serão analisadas as evoluções temporais de algumas medidas de emaranhamento global, a partir de estados contidos no subespaço de uma onda de spin: a dinâmica considerada cria emaranhamento global até cada medida atingir uma saturação / Doutorado / Física da Matéria Condensada / Doutor em Ciências
7

Etude du couplage optomécanique dans une cavité de grande finesse. Observation du mouvement Brownien d'un miroir

Hadjar, Yassine 25 November 1998 (has links) (PDF)
The topic of this thesis is the theoretical analysis of theoptomechanical coupling effects in a high-finesse optical cavity, and the experimental realization of such a device.Radiation pressure exerted by light limits the sensitivity of high precision optical measurements. In particular, the sensitivity of interferometric measurements of gravitational wave is limited by the so called standard quantum limit. cavity with a movable mirror. The internal field stored in such cavity can be orders of magnitude greater than the input field, and it's radiation pressure force can change the physical length of the cavity. In turn, any change in the mirror's position changes the phase of the out put field. This optomechanical coupling leads to an intensity-dependent phase shift for thelight equivalent to an optical Kerr effect. Such a device can then be used for squeezing generation or quantum nondemolition measurements.In our experiment, we send a laser beam in to a high-finesse optical cavity with a movable mirror coated on a high Q-factor mechanical resonator. Quantum effects of radiation pressure become therefore, at low temperature, experimentally observable. However, we've shown that the phase of the reflected field is very sensitive to small mirror displacements, which indicate other possible applications of thistype of device like high precision displacements measurements. We've been able to observe the Brownian motion of the moving mirror. We've also used an auxiliary intensity modulated laser beam to optically excite the acoustic modes. We've finally obtained a sensitivity of2x10^(-19) m/sqrt(Hz), in agreement with theoretical prediction.
8

Fluctuation-mediated interactions of atoms and surfaces on a mesoscopic scale

Haakh, Harald Richard January 2012 (has links)
Thermal and quantum fluctuations of the electromagnetic near field of atoms and macroscopic bodies play a key role in quantum electrodynamics (QED), as in the Lamb shift. They lead, e.g., to atomic level shifts, dispersion interactions (Van der Waals-Casimir-Polder interactions), and state broadening (Purcell effect) because the field is subject to boundary conditions. Such effects can be observed with high precision on the mesoscopic scale which can be accessed in micro-electro-mechanical systems (MEMS) and solid-state-based magnetic microtraps for cold atoms (‘atom chips’). A quantum field theory of atoms (molecules) and photons is adapted to nonequilibrium situations. Atoms and photons are described as fully quantized while macroscopic bodies can be included in terms of classical reflection amplitudes, similar to the scattering approach of cavity QED. The formalism is applied to the study of nonequilibrium two-body potentials. We then investigate the impact of the material properties of metals on the electromagnetic surface noise, with applications to atomic trapping in atom-chip setups and quantum computing, and on the magnetic dipole contribution to the Van der Waals-Casimir-Polder potential in and out of thermal equilibrium. In both cases, the particular properties of superconductors are of high interest. Surface-mode contributions, which dominate the near-field fluctuations, are discussed in the context of the (partial) dynamic atomic dressing after a rapid change of a system parameter and in the Casimir interaction between two conducting plates, where nonequilibrium configurations can give rise to repulsion. / Thermische und Quantenfluktuationen des elektromagnetischen Nahfelds von Atomen und makroskopischen Körpern spielen eine Schlüsselrolle in der Quantenelektrodynamik (QED), wie etwa beim Lamb-Shift. Sie führen z.B. zur Verschiebung atomarer Energieniveaus, Dispersionswechselwirkungen (Van der Waals-Casimir-Polder-Wechselwirkungen) und Zustandsverbreiterungen (Purcell-Effekt), da das Feld Randbedingungen unterliegt. Mikroelektromechanische Systeme (MEMS) und festkörperbasierte magnetische Fallen für kalte Atome (‘Atom-Chips’) ermöglichen den Zugang zu mesoskopischen Skalen, auf denen solche Effekte mit hoher Genauigkeit beobachtet werden können. Eine Quantenfeldtheorie für Atome (Moleküle) und Photonen wird an Nichtgleichgewichtssituationen angepasst. Atome und Photonen werden durch vollständig quantisierte Felder beschrieben, während die Beschreibung makroskopischer Körper, ähnlich wie im Streuformalismus (scattering approach) der Resonator-QED, durch klassische Streuamplituden erfolgt. In diesem Formalismus wird das Nichtgleich- gewichts-Zweiteilchenpotential diskutiert. Anschließend wird der Einfluss der Materialeigenschaften von normalen Metallen auf das elektromagnetische Oberflächenrauschen, das für magnetische Fallen für kalte Atome auf Atom-Chips und für Quantencomputer-Anwendungen von Bedeutung ist, sowie auf den Beitrag des magnetischen Dipolmoments zum Van der Waals-Casimir-Polder-Potential im thermisch- en Gleichgewicht und in Nichtgleichgewichtssituationen untersucht. In beiden Fällen sind die speziellen Eigenschaften von Supraleitern von besonderem Interesse. Beiträge von Oberflächenmoden, die die Feldfluktuationen im Nahfeld dominieren, werden im Kontext des (partiellen) dynamischen Dressing nach einer raschen Änderung eines Systemparameters sowie für die Casimir-Wechselwirkung zweier metallischer Platten diskutiert, zwischen denen in Nichtgleichgewichtssituationen Abstoßung auftreten kann.
9

Emergence of Unconventional Phases in Quantum Spin Systems

Bernier, Jean-Sebastien 26 February 2009 (has links)
In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large-N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1)in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways. In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.
10

Emergence of Unconventional Phases in Quantum Spin Systems

Bernier, Jean-Sebastien 26 February 2009 (has links)
In this thesis, we investigate strongly correlated phenomena in quantum spin systems. In the first part of this work, we study geometrically frustrated antiferromagnets (AFMs). Generalizing the SU(2) Heisenberg Hamiltonian to Sp(N) symmetry, we obtain, in the large-N limit, the mean-field phase diagrams for the planar pyrochlore and cubic AFMs. We then use gauge theories to consider fluctuation effects about their respective mean-field configurations. We find, in addition to conventional Neel states, a plethora of novel magnetically disordered phases: two kinds of spin liquids, Z2 in 2+1D and U(1)in 3+1D, and several valence bond solids such as two and three-dimensional plaquette and columnar singlet states. We use the same approach to study the diamond lattice AFM which possesses extended classical ground state degeneracy. We demonstrate that quantum and entropic fluctuations lift this degeneracy in different ways. In the second part of the thesis, we study ultracold spinor atoms confined in optical lattices. We first demonstrate the feasibility of experimental realization of rotor models using ultracold spin-one Bose atoms in a spin-dependent and disordered optical lattice. We show that the ground state of such disordered rotor models with quadrupolar interactions can exhibit biaxial nematic ordering in the disorder-averaged sense, and suggest an imaging experiment to detect the biaxial nematicity in such systems. Finally, using variational wavefunction methods, we study the Mott phases and superfluid-insulator transition of spin-three bosons in an optical lattice with an anisotropic two dimensional optical trap. We chart out the phase diagrams for Mott states with n = 1 and n = 2 atoms per lattice site. We show that the long-range dipolar interaction stabilizes a state characterized by antiferromagnetic chains made of ferromagnetically aligned spins. We also obtain the mean-field phase boundary for the superfluid-insulator transition, and show that inside the superfluid phase and near the superfluid-insulator phase boundary, the system undergoes a first order antiferromagnetic-ferromagnetic spin ordering transition.

Page generated in 0.1195 seconds