• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 6
  • 3
  • Tagged with
  • 42
  • 42
  • 29
  • 29
  • 23
  • 19
  • 19
  • 17
  • 15
  • 13
  • 11
  • 11
  • 10
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

BCC metals in extreme environments : modelling the structure and evolution of defects

Gilbert, Mark R. January 2010 (has links)
Designing materials for fusion applications is a very challenging problem, requiring detailed understanding of the behaviour of materials under the kinds of extreme conditions expected in a fusion environment. During the lifetime of fusion-reactor components, materials will be subjected to high levels of neutron irradiation, but must still perform effectively at high operating temperatures and under significant loading conditions. Body-centred cubic (bcc) transition metals are some of the most promising candidates for structural materials in fusion because of their relatively high density, which allows for effective neutron-shielding with the minimum volume and mass of material. In this work we perform atomistic simulations on two of the most important of these, Fe and W. In this thesis we describe atomic-scale simulations of defects found in bcc systems. In part I we consider the vacancy and interstitial loop defects that are produced and accumulated as a result of irradiation-induced displacement cascades. We show that vacancy dislocation loops have a critical size below which they are highly unstable relative to planar void defects, and thus offer an explanation as to why they are so rarely seen in TEM observations of irradiated bcc metals. Additionally, we compare the diffusion rates of these vacancy loops to their interstitial counterparts and find that, while interstitial loops are more mobile, the difference in mobility is not as significant as might have been expected. In part II we study screw dislocations, which, as the rate limiting carriers of plastic deformation, are significantly responsible for the strength of materials. We present results from large-scale finite temperature molecular dynamics simulations of screw dislocations under stress and observe the thermally-activated kink-pair formation regime at low stress, which appears to be superseded by a frictional regime at higher stresses. The mobility functions fitted to the results are vital components in simulations of dislocation networks and other large-scale phenomena. Lastly, we develop a multi-string Frenkel-Kontorova model that allows us to study the core structure of screw dislocations. Subtle changes in the form of the interaction laws used in this model demonstrate the difference between the non-degenerate and degenerate core structures. We provide simple criteria to guarantee the correct structure when developing interatomic potentials for bcc metals.
12

Quantitative structural and compositional characterisation of bimetallic fuel-cell catalyst nanoparticles using STEM

MacArthur, Katherine E. January 2015 (has links)
Platinum-based catalysts for hydrogen fuel-cell applications have progressed greatly with the addition of a second element in either a mixed-alloy or core-shell structure. Not only do they contain a reduced amount of the more expensive platinum metal but they have been shown to demonstrate a significant improvement in catalytic activity. Further improvement of these systems can only be made by careful investigation of such catalyst panoparticles on an atomic scale. These nanoparticles provide a significant characterisation challenge due to their minute size and beam sensitivity. A new method of quantifying the annular dark-field (ADF) scanning transmission electron microscope (STEM) signal on an absolute scale has been developed to address this problem. Experimental images are scaled to a fraction of the incident beam intensity from a detector map. The integrated intensity of each individual atomic column is multiplied by the pixel area to yield a more robust imaging parameter: a scattering cross section, σ. Using this cross section approach and simulated reference data, I show it is possible to count the number of atoms in individual columns. With some prior knowledge of the sample, this makes it possible to reconstruct the 3-dimensional structures of pure platinum nanoparticles. Such an approach has subsequently been extended to bimetallic particles here the elements are close in atomic number, using the platinum-iridium system as an example. In the same way that the cross section can be calculated from ADF image intensity, it is possible to calculate an energy dispersive x-ray (EDX) partial scattering cross section, beneficial especially because of the simplicity of its implementation. In sufficiently thin samples such that the number of x-ray counts is linearly proportional to sample thickness, we can determine element-specific atom counts. Finally, it is possible to combine EDX and ADF cross sections to provide us with quantitative structural and compositional information.
13

Study of high energy density matter through quantum molecular dynamics and time resolved X-ray scattering

White, Thomas G. January 2014 (has links)
The warm dense matter regime (WDM), defined by temperatures of a few electron volts and densities comparable with solids, is a complex state of matter where multi-body particle correlations and quantum effects play an important role in determining the overall structure and equation of state. The study of WDM states represents the laboratory analogue of the astrophysical environments found in the cores of planets and in the crusts of old stars, but also has practical applications for controlled thermonuclear fusion. Time resolved X-ray diffraction is used to study the temporal evolution of a sample from solid state towards WDM, either after irradiation with an intense proton/electron beam, in carbon samples, or direct laser illumination, in thin gold nanofoils. The electron-ion equilibration time is extracted through the use of the two-temperature model and in highly excited carbon shown to be longer than previously thought, this is attributed to strong ion-ion coupling screening the interaction (coupled mode theory). Calculation of the dynamic ion-ion structure factor is performed using orbital-free density functional theory (OF-DFT) and shown to compare well with Kohn-Sham DFT in both the static and dynamic cases. Experimental verification of these results is vital and measurement of the microscopic dynamics of warm dense aluminium have been successfully demonstrated through inelastic X-ray scattering. Using the self-seeded beam at the linear coherent light source (LCLS) scattering at a small momentum exchange allowed the first direct measurement of ion acoustic waves in WDM. This data provides the basis for a direct experimental test of many dense plasma theories through direct comparison with the ion-ion dynamic structure factor.
14

Theoretical investigation of thermal tweezers for parallel manipulation of atoms and nanoparticles on surfaces

Mason, Daniel Riordean January 2009 (has links)
A major focus of research in nanotechnology is the development of novel, high throughput techniques for fabrication of arbitrarily shaped surface nanostructures of sub 100 nm to atomic scale. A related pursuit is the development of simple and efficient means for parallel manipulation and redistribution of adsorbed atoms, molecules and nanoparticles on surfaces – adparticle manipulation. These techniques will be used for the manufacture of nanoscale surface supported functional devices in nanotechnologies such as quantum computing, molecular electronics and lab-on-achip, as well as for modifying surfaces to obtain novel optical, electronic, chemical, or mechanical properties. A favourable approach to formation of surface nanostructures is self-assembly. In self-assembly, nanostructures are grown by aggregation of individual adparticles that diffuse by thermally activated processes on the surface. The passive nature of this process means it is generally not suited to formation of arbitrarily shaped structures. The self-assembly of nanostructures at arbitrary positions has been demonstrated, though these have typically required a pre-patterning treatment of the surface using sophisticated techniques such as electron beam lithography. On the other hand, a parallel adparticle manipulation technique would be suited for directing the selfassembly process to occur at arbitrary positions, without the need for pre-patterning the surface. There is at present a lack of techniques for parallel manipulation and redistribution of adparticles to arbitrary positions on the surface. This is an issue that needs to be addressed since these techniques can play an important role in nanotechnology. In this thesis, we propose such a technique – thermal tweezers. In thermal tweezers, adparticles are redistributed by localised heating of the surface. This locally enhances surface diffusion of adparticles so that they rapidly diffuse away from the heated regions. Using this technique, the redistribution of adparticles to form a desired pattern is achieved by heating the surface at specific regions. In this project, we have focussed on the holographic implementation of this approach, where the surface is heated by holographic patterns of interfering pulsed laser beams. This implementation is suitable for the formation of arbitrarily shaped structures; the only condition is that the shape can be produced by holographic means. In the simplest case, the laser pulses are linearly polarised and intersect to form an interference pattern that is a modulation of intensity along a single direction. Strong optical absorption at the intensity maxima of the interference pattern results in approximately a sinusoidal variation of the surface temperature along one direction. The main aim of this research project is to investigate the feasibility of the holographic implementation of thermal tweezers as an adparticle manipulation technique. Firstly, we investigate theoretically the surface diffusion of adparticles in the presence of sinusoidal modulation of the surface temperature. Very strong redistribution of adparticles is predicted when there is strong interaction between the adparticle and the surface, and the amplitude of the temperature modulation is ~100 K. We have proposed a thin metallic film deposited on a glass substrate heated by interfering laser beams (optical wavelengths) as a means of generating very large amplitude of surface temperature modulation. Indeed, we predict theoretically by numerical solution of the thermal conduction equation that amplitude of the temperature modulation on the metallic film can be much greater than 100 K when heated by nanosecond pulses with an energy ~1 mJ. The formation of surface nanostructures of less than 100 nm in width is predicted at optical wavelengths in this implementation of thermal tweezers. Furthermore, we propose a simple extension to this technique where spatial phase shift of the temperature modulation effectively doubles or triples the resolution. At the same time, increased resolution is predicted by reducing the wavelength of the laser pulses. In addition, we present two distinctly different, computationally efficient numerical approaches for theoretical investigation of surface diffusion of interacting adparticles – the Monte Carlo Interaction Method (MCIM) and the random potential well method (RPWM). Using each of these approaches we have investigated thermal tweezers for redistribution of both strongly and weakly interacting adparticles. We have predicted that strong interactions between adparticles can increase the effectiveness of thermal tweezers, by demonstrating practically complete adparticle redistribution into the low temperature regions of the surface. This is promising from the point of view of thermal tweezers applied to directed self-assembly of nanostructures. Finally, we present a new and more efficient numerical approach to theoretical investigation of thermal tweezers of non-interacting adparticles. In this approach, the local diffusion coefficient is determined from solution of the Fokker-Planck equation. The diffusion equation is then solved numerically using the finite volume method (FVM) to directly obtain the probability density of adparticle position. We compare predictions of this approach to those of the Ermak algorithm solution of the Langevin equation, and relatively good agreement is shown at intermediate and high friction. In the low friction regime, we predict and investigate the phenomenon of ‘optimal’ friction and describe its occurrence due to very long jumps of adparticles as they diffuse from the hot regions of the surface. Future research directions, both theoretical and experimental are also discussed.
15

3D field ion microscopy and atom probe tomography techniques for the atomic scale characterisation of radiation damage in tungsten

Dagan, Michal January 2016 (has links)
In this work, new reconstruction and analysis methods were developed for 3D field ion microscopy (FIM) data, motivated by the goal of atomic scale characterisation of radiation damage for fusion applications. A comparative FIM/ atom probe tomography (APT) study of radiation damage in self-implanted tungsten revealed FIM advantages in atomistic crystallographic characterisation, able to identify dislocations, large vacancy clusters, and single vacancies. While the latter is beyond the detection capabilities of APT, larger damage features were observed indirectly in APT data via trajectory aberrations and solute segregation. An automated 3DFIM reconstruction approach was developed to maintain reliable, atomistic, 3D insights into the atomic arrangements and vacancies distribution in ion-implanted tungsten. The new method was utilized for the automated ‘atom-by-atom' reconstruction of thousands of tungsten atoms yielding highly accurate reconstructions of atomically resolved poles but also applied to larger microstructural features such as carbides and a grain boundary, extending across larger portions of the sample. Additional tools were developed to overcome reconstruction challenges arising from the presence of crystal defects and the intrinsic distortion of FIM data. Those were employed for the automated 3D mapping of vacancies in ion-implanted tungsten, analysing their distribution in a volume extending across 50nm into the depth of the sample. The new FIM reconstruction also opened the door for more advanced analyses on FIM data. It was applied to the preliminary studies of the distortion of the reconstructed planes, found to depend on crystallographic orientation, with an increased variance in atomic positions measured in a radial direction to the centre of the poles. Additional analyses followed the subtle displacements in atomic coordinates on consecutive FIM images, to find them affected by the evaporation of atoms from the same plane. The displacements were found to increase with size as the distance to the evaporated atom decreased, and are likely to be the result of a convolution between image gas effects, surface atoms relaxation, and charge re-distribution. These measurements show potential to probe the dynamic nature of the FIM experiment and possibly resolve contributions from the different processes effecting the final image. Finally, APT characterisation was performed on bulk and pre-sharpened needles to determine the effect of sample's geometry on the resulting implantation profiles, and the extent to which pre-sharpened needles could be employed in radiation damage studies. While the ions depth profiles in needles were not found within a good match to SRIM simulations, the damage profiles exhibited closer agreement. Further, the concentration of implanted ions in bulk samples was found significantly higher than in the respective needle implanted samples, with excessive loss found for the light ion implantation.
16

Etude à l'échelle atomique de la plasticité et de la sur-stœchiométrie dans le dioxyde d'uranium / Atomic stacle study of plasticity and hyperstoichiometry in uranium dioxide

Soulié, Aurélien 02 October 2018 (has links)
L’objectif de ce travail consiste d’une part à étudier la plasticité dans le dioxyde d’uranium en décrivant à l’échelle atomique le mécanisme de glissement des dislocations, et d’autre part à étudier l’oxyde sur-stœchiométrique en déterminant les configurations atomiques et les relations structurales des phases se formant sur le diagramme en fonction de la stœchiométrie O/U et de la température. Nous réalisons pour cela des simulations à l’échelle atomique par minimisation d’énergie et par dynamique moléculaire à l’aide d’un potentiel empirique complexe à charges variables, autorisant des modifications de charges d’ions en fonction de leur environnement local. Cette étude nous a permis dans un premier temps de caractériser la plasticité dans les monocristaux d’UO₂ en montrant qu’elle est produite dans les plans de glissement principaux {100} par glissement thermiquement activé de dislocations coin à basse température par un procédé de germination et de croissance de paires de décrochements sur ces dislocations. Dans un second temps, le même potentiel empirique nous a permis de préciser à l’échelle atomique la structure de la phase désordonnée UO₂₊ₓ à haute température et l’évolution en fonction de la température de la structure de la phase ordonnée U₄O₉₋ᵧ. Nous donnons alors une description atomistique d’une partie du diagramme de phase. Ainsi, l’outil que nous utilisons, un potentiel à charges variables, nous a permis de mieux comprendre les propriétés de l’UO₂ et d’une façon plus générale, nous prouvons que ce type d’outil est prometteur complémentaire aux potentiels empiriques classiques et aux méthodes ab-initio pour modéliser des systèmes atomiques complexes. / The aim of this work is to study on the first hand plasticity in uranium dioxide by the mean of an atomic scale characterization of dislocations glide mechanisms, and on the other hand to study hyper-stoichiometric uranium dioxide by the determination of atomic configurations and their relations that appear on the phase diagram as a function of O/U ratio and temperature. To achieve this, we perform atomic scale simulations by energy minimization and molecular dynamics using a complex variable charge empirical potential, which let the ionic charges vary as the local atomic environment is modified. We firstly characterize plasticity in UO₂ single crystals and show that it is governed in the {100} main glide planes by thermally activated edge dislocations glide at low temperatures by a mechanism of nucleation and growth of kink pairs on these dislocations. Then, the same empirical potential let us derive at the atomic scale the structure of the high temperature disordered UO₂₊ₓ phase and the evolution with temperature of the ordered structure U₄O₉. This gives an atomistic description of part of the U-O phase diagram. So, the tool we use, a variable charge empirical potential, let us understand more precisely UO₂ properties, and more generally we prove that this kind of tool is a promising alternative to classical empirical potentials and ab-initio methods to model complex atomic systems.
17

Beam induced dynamics in oxide glasses

Tietz, Christoph, Fritz, Thomas, Holzweber, Katharina, Legenstein, Maria, Sepiol, Bogdan 12 July 2022 (has links)
No description available.
18

Energy-level alignment at organic and hybrid organic-inorganic photovoltaic interfaces

Noori, Keian January 2013 (has links)
Organic and hybrid organic-inorganic photovoltaic (PV) devices have the potential to provide low-cost, large scale renewable energy. Despite the tremendous progress that has been made in this field, device efficiencies remain low. This low efficiency can be partly attributed to the low open-circuit voltages (Voc) generated by organic and hybrid organic-inorganic PV devices. The Voc is critically determined by the energy-level alignment at the interface between the materials forming the device. In this thesis we use first-principles methods to explore the energy-level alignment at the interfaces between the conjugated polymer poly(3-hexylthiophene) (P3HT) and three electron acceptors, zinc oxide (ZnO), gallium arsenide (GaAs) and graphene. We find that Voc reported in the literature for ZnO/P3HT devices is significantly lower than the theoretical maximum and that the interfacial electrostatic dipole plays an important role in the physics underlying the charge transfer at the heterojunction. We note significant charge transfer from the polymer to the semiconductor at GaAs/P3HT interfaces, and use this result to help interpret experimental data. Our findings support the conclusion that charge transferred from P3HT to GaAs nanowires can passivate the surface defect states of the latter and, as a result, account for the observed decrease in photoluminescence lifetimes. Finally, we explore the energy-level alignment at the graphene/P3HT interface and find that Voc reported for experimental devices is in line with the theoretical maximum. The effect of functionalised graphene is also examined, leading to the suggestion that functionalisation might have important consequences for device optimisation.
19

A study of irradiation damage in iron and Fe-Cr alloys

Xu, Shuo January 2013 (has links)
Irradiation damage structures induced in pure Fe and Fe-Cr (up to 14%Cr) alloys by 2 MeV Fe+ ion irradiations in the temperature range 300-460°C were investigated by transmission electron microscopy. Specimens were irradiated in bulk to doses of 1.5 x 1019 Fe+/m2 (about 2.5 displacements per atom: dpa) and 4.5 x 1019 Fe+/m2 (about 7 dpa). In most cases, damage took the form of dislocation loops with diameters from 2-100nm; the loops were distributed uniformly within all the samples. At higher irradiation temperatures (400°C, 460°C), complex microstructures such as finger loops (50nm in width and 1 micron in length) and perpendicular <100> loop clusters, were observed in both pure Fe and Fe-Cr samples. Loop sizes and densities were seen to change as a function of irradiation temperature and dose. Loop sizes were seen to increase as the increase of irradiation temperatures and doses, while loop densities only increased with increasing doses and decreased as increasing temperatures. Loops with both types of Burgers vectors (<100> and ½<111>) were observed in all the samples. The proportion of <100> loops was higher in Fe than that in Fe-Cr alloys at the same irradiation condition, which has can be attributed to the high mobility of ½<111> loops in Fe, so that a large proportion of them will escape to the (001) foil surface. A transition in loop Burgers vectors as a consequence of increasing temperature was observed. In Fe, the proportion of <100> loops increased with increasing irradiation temperature from 40% at 300°C to 60% at 460°C. A similar trend was found in the Fe-Cr alloys, but due to the higher proportion of ½<111> loops in these alloys, the increase of <100> loops was not that obvious, being from 30% at 300°C to 45% at 460°C(Fe-11Cr). The effects of irradiation dose rate on the formation of dislocation loops by 2 MeV Fe+ ions were also investigated. These irradiations were carried out at 300°C with two different implantation dose rates: 6 x 10-4 dpa/s and 3 x 10-5 dpa/s. The implantation dose for both implantations was 0.38 x 1019 Fe+/m2 (0.5 dpa). Both the average loop size and loop densities for the Fe-Cr specimens subjected to the high dose rate irradiation were higher than that in the low dose rate irradiations. Take Fe-14Cr as an example, that the loop densities in high dose rate irradiation increased about 90% compared to that in low dose rate, and the average loop size in high dose rate irradiation was 30% larger than that in low dose rate irradiation. The ‘inside-outside contrast’ method was applied to determine the loop nature in all the samples. It was found that all the large loops (>5nm) are of interstitial type. Any vacancies are believed to exist in the form of small dislocation loops (<5nm) or sub-microscopic voids.
20

Atomic scale characterisation of oxide dispersion strengthened steels for fusion applications

Williams, Ceri Ann January 2012 (has links)
Reduced-activation ferritic steels are considered as the primary candidate materials for structural applications within nuclear fusion power plants. It is known that by mechanically alloying ferritic steel powder with Y (usually in the form of Y₂O₃) then consolidating the material by hot isostatic pressing, a nanoscale dispersion of oxygen rich nanoclusters as small as ~2nm is introduced into the microstructure. This vastly improves high temperature strength and creep resistance, and the nanoclusters also act as trapping sites for helium and point defects produced under irradiation. In this thesis, the evolution of the oxide nanoclusters in a Fe-14Cr-2W-0.3Ti & 0.3Y₂O₃ ODS alloy was investigated primarily using atom probe tomography. The microstructure was characterised at various points during processing to give an insight into the factors influencing the formation of the nanoclusters. It was found that the nanoclusters nucleated during the mechanical alloying stage, then followed near classical nucleation and growth mechanisms keeping the same composition of ~8%Y, ~12%Ti,~25%O and ~45%Cr throughout. The formation and evolution of 5-15nm grain boundary oxides was also observed, and these were shown to form first as Cr₂O₃ particles that subsequently transform into a Y-Ti-O based oxide on further processing. The influence of mechanical alloying with 0.5wt.%Fe₂Y rather than 0.3wt.%Y₂O₃ was also investigated, and this showed that there was no difference in the final microstructure produced provided the level of Ti in the starting powder was tightly controlled. Without sufficient Ti, the nanoclusters were Y-O based and ~6nm diameter. Both the Y-O and Y-Ti-O nanoclusters were moderately stable on annealing at 1200°C for up to 100 hours, with only minimal coarsening observed. Ti was found not to influence the coarsening rate of the nanoclusters significantly. The stability of the oxide nanoclusters under irradiation was investigated by using Fe²⁺ ion irradiation to simulate displacement cascade damage in the ODS-Eurofer material (the official European candidate material for testing in the ITER fusion test reactor). Doses up to ~6 dpa at 400°C were used, and there was no significant change to the nanocluster distribution. However segregation of Mn to dislocations was observed after irradiation. These results indicate that ODS steels are good candidate structural materials, as the microstructure is stable at high temperature and under irradiation. The starting powders, and processing parameters need to be tightly controlled in order to produce the optimal material for use in service.

Page generated in 0.0596 seconds