• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 517
  • 106
  • 87
  • 38
  • 36
  • 34
  • 19
  • 14
  • 7
  • 6
  • 6
  • 4
  • 4
  • 4
  • 3
  • Tagged with
  • 1004
  • 1004
  • 293
  • 200
  • 186
  • 153
  • 150
  • 138
  • 127
  • 123
  • 116
  • 99
  • 98
  • 94
  • 93
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
181

Designing Simulation-Based Active Learning Activities Using Augmented Reality and Sets of Offline Games

Hernandez, Olivia Kay January 2020 (has links)
No description available.
182

Training Wayfinding: Natural Movement In Mixed Reality

Savage, Ruthann 01 January 2006 (has links)
The Army needs a distributed training environment that can be accessed whenever and wherever required for training and mission rehearsal. This paper describes an exploratory experiment designed to investigate the effectiveness of a prototype of such a system in training a navigation task. A wearable computer, acoustic tracking system, and see-through head mounted display (HMD) were used to wirelessly track users' head position and orientation while presenting a graphic representation of their virtual surroundings, through which the user walked using natural movement. As previous studies have shown that virtual environments can be used to train navigation, the ability to add natural movement to a type of virtual environment may enhance that training, based on the proprioceptive feedback gained by walking through the environment. Sixty participants were randomly assigned to one of three conditions: route drawing on printed floor plan, rehearsal in the actual facility, and rehearsal in a mixed reality (MR) environment. Participants, divided equally between male and female in each group, studied verbal directions of route, then performed three rehearsals of the route, with those in the map condition drawing it onto three separate printed floor plans, those in the practice condition walking through the actual facility, and participants in the MR condition walking through a three dimensional virtual environment, with landmarks, waypoints and virtual footprints. A scaling factor was used, with each step in the MR environment equal to three steps in the real environment, with the MR environment also broken into "tiles", like pages in an atlas, through which participant progressed, entering each tile in succession until they completed the entire route. Transfer of training testing that consisted of a timed traversal of the route through the actual facility showed a significant difference in route knowledge based on the total time to complete the route, and the number of errors committed while doing so, with "walkers" performing better than participants in the paper map or MR condition, although the effect was weak. Survey knowledge showed little difference among the three rehearsal conditions. Three standardized tests of spatial abilities did not correlate with route traversal time, or errors, or with 3 of the 4 orientation localization tasks. Within the MR rehearsal condition there was a clear performance improvement over the three rehearsal trials as measured by the time required to complete the route in the MR environment which was accepted as an indication that learning occurred. As measured using the Simulator Sickness Questionnaire, there were no incidents of simulator sickness in the MR environment. Rehearsal in the actual facility was the most effective training condition; however, it is often not an acceptable form of rehearsal given an inaccessible or hostile environment. Performance between participants in the other two conditions were indistinguishable, pointing toward continued experimentation that should include the combined effect of paper map rehearsal with mixed reality, especially as it is likely to be the more realistic case for mission rehearsal, since there is no indication that maps should be eliminated. To walk through the environment beforehand can enhance the Soldiers' understanding of their surroundings, as was evident through the comments from participants as they moved from MR to the actual space: "This looks like I was just here", and "There's that pole I kept having trouble with". Such comments lead one to believe that this is a tool to continue to explore and apply. While additional research on the scaling and tiling factors is likely warranted, to determine if the effect can be applied to other environments or tasks, it should be pointed out that this is not a new task for most adults who have interacted with maps, where a scaling factor of 1 to 15,000 is common in orienteering maps, and 1 to 25,000 in military maps. Rehearsal time spent in the MR condition varied widely, some of which could be blamed on an issue referred to as "avatar excursions", a system anomaly that should be addressed in future research. The proprioceptive feedback in MR was expected to positively impact performance scores. It is very likely that proprioceptive feedback is what led to the lack of simulator sickness among these participants. The design of the HMD may have aided in the minimal reported symptoms as it allowed participants some peripheral vision that provided orientation cues as to their body position and movement. Future research might include a direct comparison between this MR, and a virtual environment system through which users move by manipulating an input device such as a mouse or joystick, while physically remaining stationary. The exploration and confirmation of the training capabilities of MR as is an important step in the development and application of the system to the U.S. Army training mission. This experiment was designed to examine one potential training area in a small controlled environment, which can be used as the foundation for experimentation with more complex tasks such as wayfinding through an urban environment, and or in direct comparison to more established virtual environments to determine strengths, as well as areas for improvement, to make MR as an effective addition to the Army training mission.
183

Orienting Of Visual-spatial Attention With Augmented Reality: Effects Of Spatial And Non-spatial Multi-modal Cues

Jerome, Christian 01 January 2006 (has links)
Advances in simulation technology have brought about many improvements to the way we train tasks, as well as how we perform tasks in the operational field. Augmented reality (AR) is an example of how to enhance the user's experience in the real world with computer generated information and graphics. Visual search tasks are known to be capacity demanding and therefore may be improved by training in an AR environment. During the experimental task, participants searched for enemies (while cued from visual, auditory, tactile, combinations of two, or all three modality cues) and tried to shoot them while avoiding shooting the civilians (fratricide) for two 2-minute low-workload scenarios, and two 2-minute high-workload scenarios. The results showed significant benefits of attentional cuing on visual search task performance as revealed by benefits in reaction time and accuracy from the presence of the haptic cues and auditory cues when displayed alone and the combination of the visual and haptic cues together. Fratricide occurrence was shown to be amplified by the presence of the audio cues. The two levels of workload produced differences within individual's task performance for accuracy and reaction time. Accuracy and reaction time were significantly better with the medium cues than all the others and the control condition during low workload and marginally better during high workload. Cue specificity resulted in a non-linear function in terms of performance in the low workload condition. These results are in support of Posner's (1978) theory that, in general, cueing can benefit locating targets in the environment by aligning the attentional system with the visual input pathways. The cue modality does not have to match the target modality. This research is relevant to potential applications of AR technology. Furthermore, the results identify and describe perceptual and/or cognitive issues with the use of displaying computer generated augmented objects and information overlaid upon the real world. The results also serve as a basis for providing a variety of training and design recommendations to direct attention during military operations. Such recommendations include cueing the Soldier to the location of hazards, and mitigating the effects of stress and workload.
184

Comparison of Augmented Reality Rearview and Radar Head-Up Displays for Increasing Spatial Awareness During Exoskeleton Operation

Hollister, Mark Andrew 19 March 2024 (has links)
Full-body powered exoskeletons for industrial workers have the potential to reduce the incidence of work-related musculoskeletal disorders while increasing strength beyond human capabilities. However, operating current full-body powered exoskeletons imposes different loading, motion, and balance requirements on users compared to unaided task performance, potentially resulting in additional mental workload on the user which may reduce situation awareness (SA) and increase risk of collision with pedestrians, negating the health and safety benefits of exoskeletons. Exoskeletons could be equipped with visual aids to improve SA, like rearview cameras or radar displays. However, research on design and evaluation of such displays for exoskeleton users are absent in the literature. This empirical study compared several augmented reality (AR) head-up displays (HUDs) in providing SA to minimize pedestrian collisions while completing common warehouse tasks. Specifically, the study consisted of an experimental factor of display abstraction including four levels, from low to high abstraction: rearview camera, overhead radar, ring radar, and no visual aid (as control). The second factor was elevation angle that was analyzed with the overhead and ring radar displays at 15°, 45°, and 90°. A 1x4 repeated measures ANOVA on all four display abstraction levels at 90° revealed that every display condition performed better than the no visual aid condition, the Bonferroni post-hoc test revealed that overhead and ring radars (medium and high abstraction respectively) received higher usability ratings than the rearview camera (low abstraction). A 2x3 repeated measures ANOVA on the two radar displays at all three display angles found that the overhead radar yielded better transport time and situation awareness ratings than the ring radar. Further, the two-way ANOVA found that 45° angles yielded the best transport collision times. Thus, AR displays presents promise in augment SA to minimize collision risk to collision and injury in warehouse settings. / Master of Science / Exoskeletons can increase the strength capabilities of industrial workers while reducing the likelihood of injury from heavy lifting and materials handling. However, full-body powered exoskeletons are currently very unwieldy, demanding users to focus their attention on controlling the exoskeleton that may cause a loss awareness of their surroundings. This may increase the likelihood of collisions with pedestrians, presenting a significant safety concern that could negate the benefits of exoskeletons. Rearview cameras and radar displays of nearby pedestrians could improve situation awareness for the exoskeleton user; however, these methods are not well-tested in settings where exoskeletons would be used. This study compared a rearview camera, a conventional radar, and a ring-shaped radar at display angles of 15°, 45°, and 90° using an augmented reality headset and simulated warehouse task to determine the combination of display type and angle that would maximize situation awareness and minimize collisions with pedestrians. The study revealed that all displays performed better than no display support and the latest evidence from this study and the literature suggests that a conventional overhead radar at 45° performed best.
185

Effectiveness of Augmented RealityCommunication Through Poster Design

Muffet, Nicholas J. 06 December 2022 (has links)
No description available.
186

Comprehensive Evaluation of Augmented Reality for Visualizing Building Exteriors

Panguru, Banoday Shiridinadh Reddy, Madhineni, Hemendranath Chowdary January 2023 (has links)
The aim of the thesis is to help people visualize architectural designs more effectively. By using their smartphone cameras, users can superimpose digital information in a real-world environment. The study explores whether Augmented Reality (AR) can be practical in the field of building design, showcasing benefits such as saving costs and making the implementation process simpler. This research is noteworthy for its originality, as it focuses on the unexplored potential of AR in this particular area. The results emphasize how AR has the ability to make blueprint visualization more lifelike and dynamic, thereby enhancing the overall user experience.
187

Ljudets roll på ljusfestivaler : Intervjustudie med audiovisuella konstnärer verksamma på svenska ljusfestivaler

Thilander, Isak January 2023 (has links)
Uppsatsen tar upp vad ljudets roll är på en ljusfestival utifrån kreatörer och kompositörers perspektiv med hjälp av djupintervjuer. Uppsatsens teoretiska ramverk är fokuserat på teorier om interaktivt ljud. Ambitionen är att bidra med ny kunskap och fördjupad förståelse som i sin tur kan ligga till grund för vidareutveckling av ljusfestivaler. I fråga om interaktivitet har den teknik som används i augmented reality och metaverse framstått som speciellt intressant. Uppsatsen har två övergripande frågeställningar vilka är: På vilka sätt kan ljudet påverka den personliga upplevelsen av ett audiovisuellt konstverk? Den andra frågan lyder: Vad bidrar ljudet med till den totala upplevelsen av en ljusfestival? Resultatet visar blev att ljudet bidrar till att höja upplevelsen och att placeringen av ljudet hade stor effekt på ljusfestivaler. För att samla in data så har djupintervjuer gjorts med kreatörer inom området för ljusfestivaler. Resultatet visar att ljudet bidrar till att höja upplevelsen och att placeringen av ljudet hade stor effekt på ljusfestivaler. Kreatörer och kompositörer ofta saknar den kompetens som krävs för att utveckla ljusfestivaler, vad som jag i uppsatsen benämner som multikompetens. Det handlar både om hur ljud kan skapas till kreatörens verk och påverkan från omgivande. Resultaten visar att intresset för att använda både ljud och ljus successivt ökar hos visuell kreatörer, audiovisuella kreatörer och kompositörer. Det finns dock de som på senare tid har börjat att skapa ljud eftersom man tycker att det kan bidra till en större upplevelse för betraktaren.
188

Developing an Augmented Reality Visual Clutter Score Through Establishing the Applicability of Image Analysis Measures of Clutter and the Analysis of Augmented Reality User Interface Properties

Flittner, Jonathan Garth 05 September 2023 (has links)
Augmented reality (AR) is seeing a rapid expansion into several domains due to the proliferation of more accessible and powerful hardware. While augmented reality user interfaces (AR UIs) allow the presentation of information atop the real world, this extra visual data potentially comes at a cost of increasing the visual clutter of the users' field of view, which can increase visual search time, error rates, and have an overall negative effect on performance. Visual clutter has been studied for existing display technologies, but there are no established measures of visual clutter for AR UIs which precludes the study of the effects of clutter on performance in AR UIs. The first objective of this research is to determine the applicability of extant image analysis measures of feature congestion, edge density, and sub-band entropy for measuring visual clutter in the head-worn optical see-through AR space and establish a relationship between image analysis measures of clutter and visual search time. These image analysis measures are specifically chosen to quantify clutter, as they can be applied to complex and naturalistic scenes, as is common to experience while using an optical see-through AR UI. The second objective is to examine the effects of AR UIs comprised of multiple apparent depths on user performance through the metric of visual search time. The third objective is to determine the effects of other AR UI properties such as target clutter, target eccentricity, target apparent depth and target total distance on performance as measured through visual search time. These results will then be used to develop a visual clutter score, which will rate different AR UIs against each other. Image analysis measures for clutter of feature congestion, edge density, and sub-band entropy of clutter were correlated to visual search time when they were taken for the overall AR UI and when they were taken for a target object that a participant was searching for. In the case of an AR UI comprised of both projected and AR parts, image analysis measures were not correlated to visual search time for the constituent AR UI parts (projected or AR) but were still correlated to the overall AR UI clutter. Target eccentricity also had an effect on visual search time, while target apparent depth and target total distance from center did not. Target type and AR object percentage also had an effect on visual search time. These results were synthesized into a general model known as the "AR UI Visual Clutter Score Algorithm" using a multiple regression. This model can be used to compare different AR UIs to each other in order to identify the AR UI that is projected to have lower target visual search times. / Doctor of Philosophy / Augmented reality is a novel but growing technology. The ability to project visual information into the real-world comes with many benefits, but at the cost of increasing visual clutter. Visual clutter in existing displays has been shown to negatively affect visual search time, error rates, and general performance, but there are no established measures of visual clutter augmented reality displays, so it is unknown if visual clutter will have the same effects. The first objective of this research is to establish measures of visual clutter for augmented reality displays. The second objective is to better understand the unique properties of augmented reality displays, and how that may affect ease of use. Measures of visual clutter were correlated to visual search time when they were taken for the augmented reality user interface, and when they were taken for a given target object within that a participant was searching for. It was also found that as targets got farther from the center of the field of view, visual search time increased, while the depth of a target from the user and the total distance a target was from the user did not. Study 1 also showed that target type and AR object percentage also had an effect on visual search time. Combining these results gives a model that can be used to compare different augmented reality user interfaces to each other.
189

Comparative Analysis of the Performance of ARCore and WebXR APIs for AR Applications

Shaik, Abu Bakr Rahman, Asodi, Venkata Sai Yakkshit Reddy January 2023 (has links)
Background: Augmented Reality has become a popular technology in recent years. Two of the most prominent AR APIs are ARCore, developed by Google, and We- bXR, an open standard for AR and Virtual Reality (VR) experiences on the web. A comparative analysis of the performance of these APIs in terms of CPU load, network latency, and frame rate is needed to determine which API is more suitable for cloud-based object visualisation AR applications that are integrated with Firebase. Firebase is a cloud-based backend-as-a-service platform made for app development.  Objectives: This study aims to provide a comparative analysis of the performance of the ARCore API and WebXR API for an object visualisation application integrated with Firebase Cloud Storage. The objective is to analyze and compare the performance of the APIs in terms of latency, frame rate, and CPU load to provide insights into their strengths and weaknesses and identify the key factors that may influence the choice of API for object visualisation.  Methods: To achieve the objectives, two object visualisation AR applications were developed using ARCore API and WebXR API with Firebase cloud. The frame rate, CPU load, and latency were used as performance metrics, the performance data was collected from the applications. The collected data was analysed and visualized to provide insights into the strengths and weaknesses of each API.  Results: The results of the study provided a comparative analysis of the performance of the ARCore API and WebXR API for object visualisation applications. The performance metrics of the AR applications, including frame rate, CPU load, and latency, were analyzed and visualized. WebXR API was found to be performing better in terms of CPU load and frame rate, while ARCore API was found to be performing better in terms of latency.  Conclusion: The study concluded that the WebXR API showcased advantages in terms of lower CPU load, and higher frame rates compared to the ARCore API which has reduced network latency. These results suggest that the WebXR API is more suitable for efficient and responsive object visualization in augmented reality applications.
190

Impact of context switching and focal distance switching on human performance in all augmented reality system

Arefin, Mohammed Safayet 01 May 2020 (has links)
Most current augmented reality (AR) displays present content at a fixed focal demand. At the same time, real-world stimuli can occur at a variety of focal distances. To integrate information, users need to switch eye focus between virtual and real-world information continuously. Previously, Gabbard, Mehra, and Swan (2018) examined these issues, using a text-based visual search task on a monocular AR display. This thesis replicated and extended the previous experiment by including a new experimental variable stereopsis (stereo, mono) and fully crossing the variables of context switching and focal distance switching, using AR haploscope. The results from the monocular condition indicate successful replication, which is consistent with the hypothesis that the findings are a general property of AR. The outcome of the stereo condition supports the same adverse effects of context switching and focal distance switching. Further, participants have better performance and less eye fatigue in the stereo condition compared to the monocular condition.

Page generated in 0.1137 seconds