Spelling suggestions: "subject:"austrittszeiten"" "subject:"austrittszeit""
1 |
Large deviations and exit time asymptotics for diffusions and stochastic resonancePeithmann, Dierk 10 December 2007 (has links)
Diese Arbeit behandelt die Asymptotik von Austritts- und Übergangszeiten für gewisse schwach zeitinhomogene Diffusionsprozesse. Darauf basierend wird ein probabilistischer Begriff der stochastischen Resonanz (SR) studiert. Techniken der großen Abweichungen spielen eine zentrale Rolle. Im ersten Teil der Arbeit (Kapitel 1-3) werden Resultate aus der Theorie der großen Abweichungen für zeithomogene Diffusionen rekapituliert. Es werden die klassischen Resultate von Freidlin und Wentzell und Erweiterungen dieser Theorie präsentiert, und es wird an das Kramers''sche Austrittszeitengesetz erinnert. Teil II befasst sich mit dem Phänomen der SR, d.h. mit Periodizitätseigenschaften von Diffusionen. In Kapitel 4 werden physikalische Maße zur Messung der Periodizität diskutiert. Deren Nachteile legen es nahe, einem alternativen, probabilistischen Ansatz zu folgen, der hier behandelt wird. Das 5. Kapitel dient der Herleitung eines gleichmäßigen Prinzips der großen Abweichungen für Diffusionen mit schwach zeitabhängigem, periodischem Drift. Die Gleichmäßigkeit des Prinzips ermöglicht die exakte Bestimmung exponentieller Übergangsraten in Kapitel 6, das die zentralen Ergebnisse des 2. Teils beinhaltet. Hierdurch wird die Maximierung gewisser Übergangswahrscheinlichkeiten ermöglicht, was zum in Kapitel 7 studierten Resonanzbegriff führt. Teil III der Arbeit setzt sich mit der Asymptotik von Austrittszeiten sogenannter selbststabilisierender Diffusionen auseinander. In Kapitel 8 wird der Zusammenhang zwischen interagierenden Teilchensystemen und selbststabilisierenden Diffusionen erläutert und die Existenz- und Eindeutigkeitsfrage behandelt. Das 9. Kapitel dient dem Studium der großen Abweichungen dieser Klasse von Diffusionen. In Kapitel 10 wird das Kramers''sche Austrittszeitengesetz auf selbststabilisierende Diffusionen übertragen, und in Kapitel 11 wird der Einfluß der selbststabilisierenden Komponente auf das Austrittszeitengesetz illustriert. / In this thesis, we study the asymptotic behavior of exit and transition times of certain weakly time inhomogeneous diffusion processes. Based on these asymptotics, a probabilistic notion of stochastic resonance (SR) is investigated. Large deviations techniques play the key role throughout this work. In the first part (Chapters 1-3) we recall the large deviations theory for time homogeneous diffusions. We present the classical results due to Freidlin and Wentzell and extensions thereof, and we remind of Kramers'' exit time law. Part II deals with the phenomenon of stochastic resonance. That is, we study periodicity properties of diffusion processes. In Chapter 4 we explain the paradigm of stochastic resonance and discuss physical notions of measuring periodicity of diffusions. Their drawbacks suggest to follow an alternative probabilistic approach, which is treated in this work. In Chapter 5 we derive a large deviations principle for diffusions subject to a weakly time dependent periodic drift term. The uniformity of the obtained large deviations bounds w.r.t. the system''s parameters plays a key role for the treatment of transition time asymptotics in Chapter 6, which contains the main result of the second part. The exact exponential transition rates obtained here allow for maximizing transition probabilities, which finally leads to the announced probabilistic notion of resonance studied in Chapter 7. In the third part we investigate the exit time asymptotics of a certain class of so-called self-stabilizing diffusions. In Chapter 8 we explain the connection between interacting particle systems and self-stabilizing diffusions, and we address the question of existence. The following Chapter 9 is devoted to the study of the large deviations behavior of these diffusions. In Chapter 10 Kramers'' exit law is carried over to our class of self-stabilizing diffusions. Finally, the influence of self-stabilization is illustrated in Chapter 11.
|
2 |
Metastability of the Chafee-Infante equation with small heavy-tailed Lévy NoiseHögele, Michael Anton 31 March 2011 (has links)
Wird der Äquator-Pol-Energietransfer als Wärmediffusion berücksichtigt, so gehen Energiebilanzmodelle in Reaktions-Diffusionsgleichungen über, deren Modellfall die (deterministische) Chafee-Infante-Gleichung darstellt. Ihre Lösung besitzt zwei stabile Zustände und mehrere instabile auf der separierenden Mannigfaltigkeit (Separatrix) der stabilen Anziehungsgebiete. Es wird bewiesen, dass die Lösung auf geeignet verkleinerten Anziehungsgebieten mit Minimalabstand zur Separatrix innerhalb von Zeitskalen relaxiert, die höchstens logarithmisch darin anwachsen. Motiviert durch statistische Belege aus grönländischen Zeitreihen wird diese partielle Differentialgleichung unter Störung mit unendlichdimensionalem, Hilbertraum-wertigen, regulär variierenden Lévy''schen reinen Sprungrauschen mit index alpha und Intensität epsilon untersucht. Ein kanonisches Beispiel dieses Rauschens ist alpha-stabiles Rauschen im Hilbertraum. Durch Erweiterung einer Methode von Imkeller und Pavlyukevich auf stochastische partielle Differentialgleichungen wird unter milden Bedingungen bewiesen, dass im Gegensatz zu Gauß''schem Rauschen die erwarteten Austritts- und übertrittszeiten zwischen Anziehungsgebieten polynomiell mit Ordnung in der inversen Intensität für kleine Rauschintensität anwachsen. In Kapitel 6 wird eine zusätzliche natürliche “Separatrixhypothese” über das Sprungmaß, eingeführt, die eine obere Schranke für die Austrittszeiten aus einer Umgebung der Separatrix impliziert. Dies ermöglicht den Nachweis einer oberen Schranke für die Austrittszeiten, welche gleichmäßig für Anfangsbedingungen in dem ganzen Anziehungsgebiet gilt. Es folgen zwei Lokalisierungsergebnisse. Schließlich wird gezeigt, dass die Lösung metastabiles Verhalten aufweist. Unter der “Separatrixhypothese” wird dies auf ein Ergebnis erweitert, welches gleichmäßig im Raum gilt. / If equator-to-pole energy transfer by heat diffusion is taken into account, Energy Balance Models turn into reaction-diffusion equations, whose prototype is the (deterministic) Chafee-Infante equation. Its solution has two stable states and several unstable ones on the separating manifold (separatrix) of the stable domains of attraction. We show, that on appropriately reduced domains of attraction of a minimal distance to the separatrix the solution relaxes in time scales increasing only logarithmically in it. Motivated by the statistical evidence from Greenland ice core time series, we consider this partial differential equation perturbed by an infinite-dimensional Hilbert space-valued regularly varying (pure jump) Lévy noise of index alpha and intensity epsilon. A proto-type of this noise is alpha-stable noise in the Hilbert space. Extending a method developed by Imkeller and Pavlyukevich to the SPDE setting we prove under mild conditions that in contrast to Gaussian perturbations the expected exit and transition times between the domains of attraction increase polynomially in the inverse intensity. In Chapter 6 we introduce an additional natural separatrix hypothesis on the jump measure that implies an upper bound on the exit time of a neighborhood of the separatrix. This allows to obtain an upper bound for the asymptotic exit time uniform for the initial positions inside the entire domain of attraction. It is followed by two localization results. Finally we prove that the solution exhibits metastable behavior. Under the separatrix hypothesis we can extend this to a result that holds uniformly in space.
|
Page generated in 0.0643 seconds