Spelling suggestions: "subject:"autoassemblage dde molécules"" "subject:"autoassemblage dee molécules""
1 |
Use of hydrogen bonds to control molecular aggregation : self-assembly of three-dimensional networks with large chambersSu, Dan 05 1900 (has links)
Thèse numérisée par la Direction des bibliothèques de l'Université de Montréal. / La liaison hydrogène est omniprésente dans la nature et joue un rôle capital dans la chimie de la matière vivante. Cette interaction non covalente, sélective, forte et directionnelle peut induire l'auto-assemblage de molécules. Les tectones sont définies comme étant des molécules dont les interactions sont dominées par des forces attractives spécifiques qui induisent la formation d'agrégats de géométrie contrôlée. La tectonique moléculaire est l'art et la science de la construction de supramolécules en utilisant des sous-unités tectoniques. Les liens hydrogène intermoléculaires présentent une force particulièrement efficace pour promouvoir la formation d'agrégats tectoniques et de telles tectones pouvant participer dans un vaste réseau de liens hydrogène peuvent être synthétisée simplement en ajoutant des sous-unités 2-pyridones sur une molécule support appropriée. Cette thèse décrit la conception et la synthèse de tectones comprenant quatre sous-unités 2-pyridones orientées suivant un tétraèdre de telle sorte qu'elles sont prédisposées à générer un réseau diamantoïde ou de géométrie comparable. Nous avons mis en évidence que de telles tectones tétraédriques peuvent s'associer par des liaisons hydrogène pour former un réseau diamantoïde contenant de larges cavités. Ces cavités générées par le réseau sont comblées par un entrelacement de réseaux diamantoïdes indépendants et autres molécules hôtes. Nous avons aussi mis en évidence que des tectones tétraédrique de différentes grandeurs peuvent engendrer des réseaux tridimensionnels autre que diamantoïdes. Ces résultats laissent entrevoir que l'application astucieuse de la tectonique moléculaire peut être employée à l'élaboration de molécules organiques dont l'assemblage tridimensionnel offrirait les propriétés remarquables des zéolites et autre substances inorganiques semblables comme la microporosité, la présence de cavités et la stabilité structurelle.
|
2 |
Étude théorique de la nanostructuration d'atomes métalliques en surface Au(111) induite par l'adsorption de molécules organiquesBenjalal, Youness 21 November 2009 (has links) (PDF)
Le présent travail est réalisé en vue de la conception et le contrôle des mouvements de nanomachines induits par un courant en régime tunnel et en vue de la rationalisation et de la compréhension d'expériences de manipulation de nano-objets moléculaires et de leurs propriétés d'auto-assemblage et de nanostructuration contrôlée de surfaces métalliques. Dans les 2 premiers chapitres sont exposées les techniques et méthodes de la Chimie quantique, de la Mécanique Moléculaire et de Transfert d'Electron que nous utilisons dans le présent travail. Les 4 autres chapitres sont consacrés à l'étude des propriétés d'adsorption et d'assemblage de molécules, spécialement conçues, d'intérêt pour la nanoélectronique et la nanomachinerie. En effet, dans le chapitre 3, il est question d'adsorption de la molécule DAT (1,4-bis(4-(2,4-diaminotriazine)phenyl)-2,3,5,6-tetrakis(4-tert-butyl-phenyl)benzene) sur les surfaces Cu(110) et Au(111) dans les conditions de très basse température sous un vide ultra-poussé (LT-UHV : Low Temperature Ultra High Vacuum). L'adsorption et l'auto-assemblage du DAT en 1D et en 2D sur la surface sont gouvernés par un processus complexe dont nous révélons les détails. En suite, dans le chapitre 4, nous avons calculé les images STM, par la technique Electron Scattering Quantum Chemistry (ESQC), de la molécule DAT sur les surfaces Cu(110) et Au(111), pour confirmer et expliquer les structures optimisées par la mécanique moléculaire à partir d'une comparaison entre les morphologies des images STM à résolution atomique et ESQC. Les chapitres 5 et 6 sont respectivement consacrés à l'étude des propriétés d'adsorption et d'auto-assemblage de la molécule di-carboxylique-imide (DCI) et d'une molécule dérivée PTCDI (pérylène-3,4,9,10-tétracarboxylique di-imide) sur la surface Au(111), nous avons trouvé que le Lander DCI s'adsorbe sur le site ponté suivant la direction [11-2] de la surface Au(111).
|
Page generated in 0.0892 seconds