• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 20
  • 7
  • 2
  • 1
  • Tagged with
  • 56
  • 56
  • 20
  • 12
  • 12
  • 12
  • 11
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • 8
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
51

Reasoning with !-graphs

Merry, Alexander January 2013 (has links)
The aim of this thesis is to present an extension to the string graphs of Dixon, Duncan and Kissinger that allows the finite representation of certain infinite families of graphs and graph rewrite rules, and to demonstrate that a logic can be built on this to allow the formalisation of inductive proofs in the string diagrams of compact closed and traced symmetric monoidal categories. String diagrams provide an intuitive method for reasoning about monoidal categories. However, this does not negate the ability for those using them to make mistakes in proofs. To this end, there is a project (Quantomatic) to build a proof assistant for string diagrams, at least for those based on categories with a notion of trace. The development of string graphs has provided a combinatorial formalisation of string diagrams, laying the foundations for this project. The prevalence of commutative Frobenius algebras (CFAs) in quantum information theory, a major application area of these diagrams, has led to the use of variable-arity nodes as a shorthand for normalised networks of Frobenius algebra morphisms, so-called "spider notation". This notation greatly eases reasoning with CFAs, but string graphs are inadequate to properly encode this reasoning. This dissertation firstly extends string graphs to allow for variable-arity nodes to be represented at all, and then introduces !-box notation – and structures to encode it – to represent string graph equations containing repeated subgraphs, where the number of repetitions is abitrary. This can be used to represent, for example, the "spider law" of CFAs, allowing two spiders to be merged, as well as the much more complex generalised bialgebra law that can arise from two interacting CFAs. This work then demonstrates how we can reason directly about !-graphs, viewed as (typically infinite) families of string graphs. Of particular note is the presentation of a form of graph-based induction, allowing the formal encoding of proofs that previously could only be represented as a mix of string diagrams and explanatory text.
52

A Bayesian learning approach to inconsistency identification in model-based systems engineering

Herzig, Sebastian J. I. 08 June 2015 (has links)
Designing and developing complex engineering systems is a collaborative effort. In Model-Based Systems Engineering (MBSE), this collaboration is supported through the use of formal, computer-interpretable models, allowing stakeholders to address concerns using well-defined modeling languages. However, because concerns cannot be separated completely, implicit relationships and dependencies among the various models describing a system are unavoidable. Given that models are typically co-evolved and only weakly integrated, inconsistencies in the agglomeration of the information and knowledge encoded in the various models are frequently observed. The challenge is to identify such inconsistencies in an automated fashion. In this research, a probabilistic (Bayesian) approach to abductive reasoning about the existence of specific types of inconsistencies and, in the process, semantic overlaps (relationships and dependencies) in sets of heterogeneous models is presented. A prior belief about the manifestation of a particular type of inconsistency is updated with evidence, which is collected by extracting specific features from the models by means of pattern matching. Inference results are then utilized to improve future predictions by means of automated learning. The effectiveness and efficiency of the approach is evaluated through a theoretical complexity analysis of the underlying algorithms, and through application to a case study. Insights gained from the experiments conducted, as well as the results from a comparison to the state-of-the-art have demonstrated that the proposed method is a significant improvement over the status quo of inconsistency identification in MBSE.
53

Towards Next Generation Sequential and Parallel SAT Solvers / Hin zur nächsten Generation Sequentieller und Paralleler SAT-Solver

Manthey, Norbert 08 January 2015 (has links) (PDF)
This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology.
54

Evaluating reasoning heuristics for a hybrid theorem proving platform

Ackermann, Jacobus Gideon 06 1900 (has links)
Text in English with abstracts in English, Afrikaans and isiZulu / The formalisation of first-order logic and axiomatic set theory in the first half of the 20th century—along with the advent of the digital computer—paved the way for the development of automated theorem proving. In the 1950s, the automation of proof developed from proving elementary geometric problems and finding direct proofs for problems in Principia Mathematica by means of simple, human-oriented rules of inference. A major advance in the field of automated theorem proving occurred in 1965, with the formulation of the resolution inference mechanism. Today, powerful Satisfiability Modulo Theories (SMT) provers combine SAT solvers with sophisticated knowledge from various problem domains to prove increasingly complex theorems. The combinatorial explosion of the search space is viewed as one of the major challenges to progress in the field of automated theorem proving. Pioneers from the 1950s and 1960s have already identified the need for heuristics to guide the proof search effort. Despite theoretical advances in automated reasoning and technological advances in computing, the size of the search space remains problematic when increasingly complex proofs are attempted. Today, heuristics are still useful and necessary to discharge complex proof obligations. In 2000, a number of heuristics was developed to aid the resolution-based prover OTTER in finding proofs for set-theoretic problems. The applicability of these heuristics to next-generation theorem provers were evaluated in 2009. The provers Vampire and Gandalf required respectively 90% and 80% of the applicable OTTER heuristics. This dissertation investigates the applicability of the OTTER heuristics to theorem proving in the hybrid theorem proving environment Rodin—a system modelling tool suite for the Event-B formal method. We show that only 2 of the 10 applicable OTTER heuristics were useful when discharging proof obligations in Rodin. Even though we argue that the OTTER heuristics were largely ineffective when applied to Rodin proofs, heuristics were still needed when proof obligations could not be discharged automatically. Therefore, we propose a number of our own heuristics targeted at theorem proving in the Rodin tool suite. / Die formalisering van eerste-orde-logika en aksiomatiese versamelingsteorie in die eerste helfte van die 20ste eeu, tesame met die koms van die digitale rekenaar, het die weg vir die ontwikkeling van geoutomatiseerde bewysvoering gebaan. Die outomatisering van bewysvoering het in die 1950’s ontwikkel vanuit die bewys van elementêre meetkundige probleme en die opspoor van direkte bewyse vir probleme in Principia Mathematica deur middel van eenvoudige, mensgerigte inferensiereëls. Vooruitgang is in 1965 op die gebied van geoutomatiseerde bewysvoering gemaak toe die resolusie-inferensie-meganisme geformuleer is. Deesdae kombineer kragtige Satisfiability Modulo Theories (SMT) bewysvoerders SAT-oplossers met gesofistikeerde kennis vanuit verskeie probleemdomeine om steeds meer komplekse stellings te bewys. Die kombinatoriese ontploffing van die soekruimte kan beskou word as een van die grootste uitdagings vir verdere vooruitgang in die veld van geoutomatiseerde bewysvoering. Baanbrekers uit die 1950’s en 1960’s het reeds bepaal dat daar ’n behoefte is aan heuristieke om die soektog na bewyse te rig. Ten spyte van die teoretiese vooruitgang in outomatiese bewysvoering en die tegnologiese vooruitgang in die rekenaarbedryf, is die grootte van die soekruimte steeds problematies wanneer toenemend komplekse bewyse aangepak word. Teenswoordig is heuristieke steeds nuttig en noodsaaklik om komplekse bewysverpligtinge uit te voer. In 2000 is ’n aantal heuristieke ontwikkel om die resolusie-gebaseerde bewysvoerder OTTER te help om bewyse vir versamelingsteoretiese probleme te vind. Die toepaslikheid van hierdie heuristieke vir die volgende generasie bewysvoerders is in 2009 geëvalueer. Die bewysvoerders Vampire en Gandalf het onderskeidelik 90% en 80% van die toepaslike OTTER-heuristieke nodig gehad. Hierdie verhandeling ondersoek die toepaslikheid van die OTTER-heuristieke op bewysvoering in die hibriede bewysvoeringsomgewing Rodin—’n stelselmodelleringsuite vir die formele Event-B-metode. Ons toon dat slegs 2 van die 10 toepaslike OTTER-heuristieke van nut was vir die uitvoering van bewysverpligtinge in Rodin. Ons voer aan dat die OTTER-heuristieke grotendeels ondoeltreffend was toe dit op Rodin-bewyse toegepas is. Desnieteenstaande is heuristieke steeds nodig as bewysverpligtinge nie outomaties uitgevoer kon word nie. Daarom stel ons ’n aantal van ons eie heuristieke voor wat in die Rodin-suite aangewend kan word. / Ukwenziwa semthethweni kwe-first-order logic kanye ne-axiomatic set theory ngesigamu sokuqala sekhulunyaka lama-20—kanye nokufika kwekhompyutha esebenza ngobuxhakaxhaka bedijithali—kwavula indlela ebheke ekuthuthukisweni kwenqubo-kusebenza yokufakazela amathiyoremu ngekhomyutha. Ngeminyaka yawo-1950, ukuqinisekiswa kobufakazi kwasuselwa ekufakazelweni kwezinkinga zejiyomethri eziyisisekelo kanye nasekutholakaleni kobufakazi-ngqo bezinkinga eziphathelene ne-Principia Mathematica ngokuthi kusetshenziswe imithetho yokuqagula-sakucabangela elula, egxile kubantu. Impumelelo enkulu emkhakheni wokufakazela amathiyoremu ngekhompyutha yenzeka ngowe-1965, ngokwenziwa semthethweni kwe-resolution inference mechanism. Namuhla, abafakazeli abanohlonze bamathiyori abizwa nge-Satisfiability Modulo Theories (SMT) bahlanganisa ama-SAT solvers nolwazi lobungcweti oluvela kwizizinda zezinkinga ezihlukahlukene ukuze bakwazi ukufakazela amathiyoremu okungelula neze ukuwafakazela. Ukukhula ngesivinini kobunzima nobunkimbinkimbi benkinga esizindeni esithile kubonwa njengenye yezinselelo ezinkulu okudingeka ukuthi zixazululwe ukuze kube nenqubekela phambili ekufakazelweni kwamathiyoremu ngekhompyutha. Amavulandlela eminyaka yawo-1950 nawo-1960 asesihlonzile kakade isidingo sokuthi amahuristikhi (heuristics) kube yiwona ahola umzamo wokuthola ubufakazi. Nakuba ikhona impumelelo esiyenziwe kumathiyori ezokucabangela okujulile kusetshenziswa amakhompyutha kanye nempumelelo yobuchwepheshe bamakhompyutha, usayizi wesizinda usalokhu uyinkinga uma kwenziwa imizamo yokuthola ubufakazi obuyinkimbinkimbi futhi obunobunzima obukhudlwana. Namuhla imbala, amahuristikhi asewuziso futhi ayadingeka ekufezekiseni izibopho zobufakazi obuyinkimbinkimbi. Ngowezi-2000, kwathuthukiswa amahuristikhi amaningana impela ukuze kulekelelwe uhlelo-kusebenza olungumfakazeli osekelwe phezu kwesixazululo, olubizwa nge-OTTER, ekutholeni ubufakazi bama-set-theoretic problems. Ukusebenziseka kwalawa mahuristikhi kwizinhlelo-kusebenza ezingabafakazeli bamathiyoremu besimanjemanje kwahlolwa ngowezi-2009. Uhlelo-kusebenza olungumfakazeli, olubizwa nge-Vampire kanye nalolo olubizwa nge-Gandalf zadinga ama-90% kanye nama-80%, ngokulandelana kwazo, maqondana nama-OTTER heuristics afanelekile. Lolu cwaningo luphenya futhi lucubungule ukusebenziseka kwama-OTTER heuristics ekufakazelweni kwamathiyoremu esimweni esiyinhlanganisela sokufakazela amathiyoremu esibizwa nge-Rodin—okuyi-system modelling tool suite eqondene ne-Event-B formal method. Kulolu cwaningo siyabonisa ukuthi mabili kuphela kwayi-10 ama-OTTER heuristics aba wusizo ngenkathi kufezekiswa isibopho sobufakazi ku-Rodin. Nakuba sibeka umbono wokuthi esikhathini esiningi ama-OTTER heuristics awazange abe wusizo uma esetshenziswa kuma-Rodin proofs, amahuristikhi asadingeka ezimweni lapho izibopho zobufakazi zingazenzekelanga ngokwazo ngokulawulwa yizinhlelo-kusebenza zekhompyutha. Ngakho-ke, siphakamisa amahuristikhi ethu amaningana angasetshenziswa ekufakazeleni amathiyoremu ku-Rodin tool suite. / School of Computing / M. Sc. (Computer Science)
55

Towards Next Generation Sequential and Parallel SAT Solvers

Manthey, Norbert 01 December 2014 (has links)
This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology.
56

Provably Sound and Secure Automatic Proving and Generation of Verification Conditions / Tillförlitligt sund och säker automatisk generering och bevisning av verifieringsvillkor

Lundberg, Didrik January 2018 (has links)
Formal verification of programs can be done with the aid of an interactive theorem prover. The program to be verified is represented in an intermediate language representation inside the interactive theorem prover, after which statements and their proofs can be constructed. This is a process that can be automated to a high degree. This thesis presents a proof procedure to efficiently generate a theorem stating the weakest precondition for a program to terminate successfully in a state upon which a certain postcondition is placed. Specifically, the Poly/ML implementation of the SML metalanguage is used to generate a theorem in the HOL4 interactive theorem prover regarding the properties of a program written in BIR, an abstract intermediate representation of machine code used in the PROSPER project. / Bevis av säkerhetsegenskaper hos program genom formell verifiering kan göras med hjälp av interaktiva teorembevisare. Det program som skall verifieras representeras i en mellanliggande språkrepresentation inuti den interaktiva teorembevisaren, varefter påståenden kan konstrueras, som sedan bevisas. Detta är en process som kan automatiseras i hög grad. Här presenterar vi en metod för att effektivt skapa och bevisa ett teorem som visar sundheten hos den svagaste förutsättningen för att ett program avslutas framgångsrikt under ett givet postvillkor. Specifikt använder vi Poly/ML-implementationen av SML för att generera ett teorem i den interaktiva teorembevisaren HOL4 som beskriver egenskaper hos ett program i BIR, en abstrakt mellanrepresentation av maskinkod som används i PROSPER-projektet.

Page generated in 0.093 seconds