• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 5
  • 1
  • Tagged with
  • 8
  • 8
  • 5
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The role of Walsh structure and ordinal linkage in the optimisation of pseudo-Boolean functions under monotonicity invariance

Christie, Lee A. January 2016 (has links)
Optimisation heuristics rely on implicit or explicit assumptions about the structure of the black-box fitness function they optimise. A review of the literature shows that understanding of structure and linkage is helpful to the design and analysis of heuristics. The aim of this thesis is to investigate the role that problem structure plays in heuristic optimisation. Many heuristics use ordinal operators; which are those that are invariant under monotonic transformations of the fitness function. In this thesis we develop a classification of pseudo-Boolean functions based on rank-invariance. This approach classifies functions which are monotonic transformations of one another as equivalent, and so partitions an infinite set of functions into a finite set of classes. Reasoning about heuristics composed of ordinal operators is, by construction, invariant over these classes. We perform a complete analysis of 2-bit and 3-bit pseudo-Boolean functions. We use Walsh analysis to define concepts of necessary, unnecessary, and conditionally necessary interactions, and of Walsh families. This helps to make precise some existing ideas in the literature such as benign interactions. Many algorithms are invariant under the classes we define, which allows us to examine the difficulty of pseudo-Boolean functions in terms of function classes. We analyse a range of ordinal selection operators for an EDA. Using a concept of directed ordinal linkage, we define precedence networks and precedence profiles to represent key algorithmic steps and their interdependency in terms of problem structure. The precedence profiles provide a measure of problem difficulty. This corresponds to problem difficulty and algorithmic steps for optimisation. This work develops insight into the relationship between function structure and problem difficulty for optimisation, which may be used to direct the development of novel algorithms. Concepts of structure are also used to construct easy and hard problems for a hill-climber.
2

Pseudo-Boolean Constraint Encodings for Conjunctive Normal Form and their Applications

Steinke, Peter 20 February 2020 (has links)
In contrast to a single clause a pseudo-Boolean (PB) constraint is much more expressive and hence it is easier to define problems with the help of PB constraints. But while PB constraints provide us with a high-level problem description, it has been shown that solving PB constraints can be done faster with the help of a SAT solver. To apply such a solver to a PB constraint we have to encode it with clauses into conjunctive normal form (CNF). While we can find a basic encoding into CNF which is equivalent to a given PB constraint, the solving time of a SAT solver significantly depends on different properties of an encoding, e.g. the number of clauses or if generalized arc consistency (GAC) is maintained during the search for a solution. There are various PB encodings that try to optimize or balance these properties. This thesis is about such encodings. For a better understanding of the research field an overview about the state-of-the art encodings is given. The focus of the overview is a simple but complete description of each encoding, such that any reader could use, implement and extent them in his own work. In addition two novel encodings are presented: The Sequential Weight Counter (SWC) encoding and the Binary Merger Encoding. While the SWC encoding provides a very simple structure – it is listed in four lines – empirical evaluation showed its practical usefulness in various applications. The Binary Merger encoding reduces the number of clauses a PB encoding needs while having the important GAC property. To the best of our knowledge currently no other encoding has a lower upper bound for the number of clauses produced by a PB encoding with this property. This is an important improvement of the state-of-the art, since both GAC and a low number of clauses are vital for an improved solving time of the SAT solver. The thesis also contributes to the development of new applications for PB constraint encodings. The programming library PBLib provides researchers with an open source implementation of almost all PB encodings – including the encodings for the special cases at-most-one and cardinality constraints. The PBLib is also the foundation of the presented weighted MaxSAT solver optimax, the PBO solver pbsolver and the WBO, PBO and weighted MaxSAT solver npSolver.
3

The complexity and expressive power of valued constraints

Zivny, Stanislav January 2009 (has links)
This thesis is a detailed examination of the expressive power of valued constraints and related complexity questions. The valued constraint satisfaction problem (VCSP) is a generalisation of the constraint satisfaction problem which allows to describe a variety of combinatorial optimisation problems. Although most results are stated in this framework, they can be interpreted equivalently in the framework of, for instance, pseudo-Boolean polynomials, Gibbs energy minimisation, or Markov Random Fields. We take a result of Cohen, Cooper and Jeavons that characterises the expressive power of valued constraint in terms of certain algebraic properties, and extend this result by showing yet another connection between the expressive power of valued constraints and linear programming. We prove a decidability result for fractional clones. We consider various classes of valued constraints and the associated cost functions with respect to the question of which of these classes can be expressed using only cost functions of bounded arities. We identify the first known example of an infinite chain of classes of constraints with strictly increasing expressive power. We present a full classification of various classes of constraints with respect to this problem. We study submodular constraints and cost functions. Submodular functions play a key role in combinatorial optimisation and are often considered to be a discrete analogue of convex functions. It has previously been an open problem whether all Boolean submodular cost functions can be decomposed into a sum of binary submodular cost functions over a possibly larger set of variables. This problem has been considered within several different contexts in computer science, including computer vision, artificial intelligence, and pseudo-Boolean optimisation. Using a connection between the expressive power of valued constraints and certain algebraic properties of cost functions, we answer this question negatively. Our results have several corollaries. First, we characterise precisely which submodular polynomials of degree 4 can be expressed by quadratic submodular polynomials. Next, we identify a novel class of submodular functions of arbitrary arities that can be expressed by binary submodular functions, and therefore minimised efficiently using a so-called expressibility reduction to the (s,t)-Min-Cut problem. More importantly, our results imply limitations on this kind of reduction and establish for the first time that it cannot be used in general to minimise arbitrary submodular functions. Finally, we refute a conjecture of Promislow and Young on the structure of the extreme rays of the cone of Boolean submodular functions.
4

Automating Component-Based System Assembly

Subramanian, Gayatri 23 May 2006 (has links)
Owing to advancements in component re-use technology, component-based software development (CBSD) has come a long way in developing complex commercial software systems while reducing software development time and cost. However, assembling distributed resource-constrained and safety-critical systems using current assembly techniques is a challenge. Within complex systems when there are numerous ways to assemble the components unless the software architecture clearly defines how the components should be composed, determining the correct assembly that satisfies the system assembly constraints is difficult. Component technologies like CORBA and .NET do a very good job of integrating components, but they do not automate component assembly; it is the system developer's responsibility to ensure thatthe components are assembled correctly. In this thesis, we first define a component-based system assembly (CBSA) technique called "Constrained Component Assembly Technique" (CCAT), which is useful when the system has complex assembly constraints and the system architecture specifies component composition as assembly constraints. The technique poses the question: Does there exist a way of assembling the components that satisfies all the connection, performance, reliability, and safety constraints of the system, while optimizing the objective constraint? To implement CCAT, we present a powerful framework called "CoBaSA". The CoBaSA framework includes an expressive language for declaratively describing component functional and extra-functional properties, component interfaces, system-level and component-level connection, performance, reliability, safety, and optimization constraints. To perform CBSA, we first write a program (in the CoBaSA language) describing the CBSA specifications and constraints, and then an interpreter translates the CBSA program into a satisfiability and optimization problem. Solving the generated satisfiability and optimization problem is equivalent to answering the question posed by CCAT. If a satisfiable solution is found, we deduce that the system can be assembled without violating any constraints. Since CCAT and CoBaSA provide a mechanism for assembling systems that have complex assembly constraints, they can be utilized in several industries like the avionics industry. We demonstrate the merits of CoBaSA by assembling an actual avionic system that could be used on-board a Boeing aircraft. The empirical evaluation shows that our approach is promising and can scale to handle complex industrial problems.
5

Towards Next Generation Sequential and Parallel SAT Solvers / Hin zur nächsten Generation Sequentieller und Paralleler SAT-Solver

Manthey, Norbert 08 January 2015 (has links) (PDF)
This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology.
6

Towards Next Generation Sequential and Parallel SAT Solvers

Manthey, Norbert 01 December 2014 (has links)
This thesis focuses on improving the SAT solving technology. The improvements focus on two major subjects: sequential SAT solving and parallel SAT solving. To better understand sequential SAT algorithms, the abstract reduction system Generic CDCL is introduced. With Generic CDCL, the soundness of solving techniques can be modeled. Next, the conflict driven clause learning algorithm is extended with the three techniques local look-ahead, local probing and all UIP learning that allow more global reasoning during search. These techniques improve the performance of the sequential SAT solver Riss. Then, the formula simplification techniques bounded variable addition, covered literal elimination and an advanced cardinality constraint extraction are introduced. By using these techniques, the reasoning of the overall SAT solving tool chain becomes stronger than plain resolution. When using these three techniques in the formula simplification tool Coprocessor before using Riss to solve a formula, the performance can be improved further. Due to the increasing number of cores in CPUs, the scalable parallel SAT solving approach iterative partitioning has been implemented in Pcasso for the multi-core architecture. Related work on parallel SAT solving has been studied to extract main ideas that can improve Pcasso. Besides parallel formula simplification with bounded variable elimination, the major extension is the extended clause sharing level based clause tagging, which builds the basis for conflict driven node killing. The latter allows to better identify unsatisfiable search space partitions. Another improvement is to combine scattering and look-ahead as a superior search space partitioning function. In combination with Coprocessor, the introduced extensions increase the performance of the parallel solver Pcasso. The implemented system turns out to be scalable for the multi-core architecture. Hence iterative partitioning is interesting for future parallel SAT solvers. The implemented solvers participated in international SAT competitions. In 2013 and 2014 Pcasso showed a good performance. Riss in combination with Copro- cessor won several first, second and third prices, including two Kurt-Gödel-Medals. Hence, the introduced algorithms improved modern SAT solving technology.
7

Algorithms for the Maximum Independent Set Problem

Lê, Ngoc C. 13 July 2015 (has links) (PDF)
This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of $S_{2;j;k}$-free graphs (thus generalizing the classical result for $S_{1;2;k}$-free graphs); + some subclasses of $tree_{k}$-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of $P_{7}$-free graphs and $S_{2;2;2}$-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of $S_{2;k;k}$-free graphs and a subclass of $S_{2;2;5}$-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for $P_{5}$-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for $P_{5}$-free graphs, to give polynomial solutions for some subclasses of $S_{2;2;2}$-free graphs and $tree_{k}$-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of $S_{i;j;k}$-free subcubic graphs.
8

Algorithms for the Maximum Independent Set Problem

Lê, Ngoc C. 18 February 2015 (has links)
This thesis focuses mainly on the Maximum Independent Set (MIS) problem. Some related graph theoretical combinatorial problems are also considered. As these problems are generally NP-hard, we study their complexity in hereditary graph classes, i.e. graph classes defined by a set F of forbidden induced subgraphs. We revise the literature about the issue, for example complexity results, applications, and techniques tackling the problem. Through considering some general approach, we exhibit several cases where the problem admits a polynomial-time solution. More specifically, we present polynomial-time algorithms for the MIS problem in: + some subclasses of $S_{2;j;k}$-free graphs (thus generalizing the classical result for $S_{1;2;k}$-free graphs); + some subclasses of $tree_{k}$-free graphs (thus generalizing the classical results for subclasses of P5-free graphs); + some subclasses of $P_{7}$-free graphs and $S_{2;2;2}$-free graphs; and various subclasses of graphs of bounded maximum degree, for example subcubic graphs. Our algorithms are based on various approaches. In particular, we characterize augmenting graphs in a subclass of $S_{2;k;k}$-free graphs and a subclass of $S_{2;2;5}$-free graphs. These characterizations are partly based on extensions of the concept of redundant set [125]. We also propose methods finding augmenting chains, an extension of the method in [99], and finding augmenting trees, an extension of the methods in [125]. We apply the augmenting vertex technique, originally used for $P_{5}$-free graphs or banner-free graphs, for some more general graph classes. We consider a general graph theoretical combinatorial problem, the so-called Maximum -Set problem. Two special cases of this problem, the so-called Maximum F-(Strongly) Independent Subgraph and Maximum F-Induced Subgraph, where F is a connected graph set, are considered. The complexity of the Maximum F-(Strongly) Independent Subgraph problem is revised and the NP-hardness of the Maximum F-Induced Subgraph problem is proved. We also extend the augmenting approach to apply it for the general Maximum Π -Set problem. We revise on classical graph transformations and give two unified views based on pseudo-boolean functions and αff-redundant vertex. We also make extensive uses of α-redundant vertices, originally mainly used for $P_{5}$-free graphs, to give polynomial solutions for some subclasses of $S_{2;2;2}$-free graphs and $tree_{k}$-free graphs. We consider some classical sequential greedy heuristic methods. We also combine classical algorithms with αff-redundant vertices to have new strategies of choosing the next vertex in greedy methods. Some aspects of the algorithms, for example forbidden induced subgraph sets and worst case results, are also considered. Finally, we restrict our attention on graphs of bounded maximum degree and subcubic graphs. Then by using some techniques, for example ff-redundant vertex, clique separator, and arguments based on distance, we general these results for some subclasses of $S_{i;j;k}$-free subcubic graphs.

Page generated in 0.0232 seconds