• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • Tagged with
  • 8
  • 8
  • 8
  • 6
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Vehicle powertrain modeling and ratio optimization for a continuously variable transmission

Smith, Michael Henry 08 1900 (has links)
No description available.
2

Electrical subsystem for Shell eco-marathon urban concept battery powered vehicle

Rose, Garrett January 2018 (has links)
Thesis (Master of Engineering in Electrical Engineering)--Cape Peninsula University of Technology, 2018. / The purpose of this paper was to design and develop an electrical power train for an Urban Concept electric vehicle geared to complete the Shell Eco-Marathon Africa in 2019. Various technologies which make up the electrical drive train of an electrical vehicle were also reviewed which include the battery pack, the battery management system, the motors, the motor management system and the human interface. Upon completion of this, the various topologies best suited for this project were selected, designed, constructed and developed. Two motors were re-designed and constructed for this vehicle and the motor drive was also constructed to control these motors. A Lithium-Ion battery pack was constructed and developed to drive the motors and an off-the-shelf battery management system was purchased and developed to suit the requirements for the Shell Eco- Marathon competition rules. A human interface was also developed in order for the driver to see various parameters of the electric vehicle defined by the Shell Eco-Marathon competition rules. After each component of the drive train was constructed, they underwent various testing procedures to determine the efficiency of each individual component and the overall efficiency for the complete drive train of this electric vehicle was ascertained. The Product Lifecycle Management Competency Centre group developed the chassis for this vehicle. For this reason, only the electric subsystems were evaluated and a simulation was completed of the complete drive train. After the complete drive train was constructed and all the individual subsystems evaluated and simulated, a vehicle with an overall efficiency of about sixty percent was expected and the completed drive train should be adequate enough to complete the entire Shell Eco-Marathon Africa circuit.
3

Development of a mechatronic transmission control system for the drivetrain of the K71 project

Nortemann, Alexander January 2014 (has links)
The tractive force has to be interrupted during a gear-shifting operation in a manual vehicle transmission, leading into a decrease of speed while changing gears during the acceleration process. Therefore in a racing application, the shifting time has to be as short as possible so that the required performance of a racing car can be achieved. The following dissertation describes the development of a transmission control system to enable gear changes within a manual gearbox, which was designed for the Formula Student racing series. Various solutions were developed on the basis of reviewed literature, technical data of components and experiences of Formula Student teams. Following this, a comparison of the concepts by means of a utility analysis identified the pneumatic actuation of selector forks to be the most suitable concept. This was mainly due to the expected shifting time, the weight, and its advantageous energy supply requirement. After the selection of the actuators and the position sensors, the system was implemented into the drivetrain to check the tment and the technical feasibility. To draw conclusions regarding the shifting time and to prove the functionality of the system, an open test bench was constructed. Additionally, the hardware and software had to be developed to enable the test run. After the manufacturing and assembling of the test bench, the optimal settings for the test run were determined. By comparing the achieved shifting time of alternative solutions, an improvement in the driving performance of a Formula Student race car is probable.
4

A control strategy for the power system of a hybrid vehicle

Furrutter, Marco Klaus 24 October 2012 (has links)
M.Ing. / The increase in awareness of the environmental problems resulting from emissions released from vehicles have forced governments and car manufactures to invest more time in to the designing a vehicle that is an alternative to petrol driven vehicles. This dissertation aims to introduce a control strategy to manage the flow of energy of different power sources that may be found on a vehicle. Hybrid vehicles are a possible solution to reducing carbon emissions that play a part in global warming. In this dissertation, di erent hybrid vehicles are de ned and their components discussed in detail. The possibility of more than one energy source to power the vehicle introduces more exibility in terms of the drivetrain but this increases the complexity of the energy control management. The goal is to optimize the energy control management to reduce fuel consumption and therefore reduce emissions. Operating procedures for the various hybrid con gurations are discussed. Simulations of the Energy Management System of the hybrid electric vehicle are used to develop the control optimization algorithm. Various control optimization procedures are discussed. Satisfactory results from the simulations allow the implementation of the hybrid onto a platform entered into the South African Solar Challenge 2010, which covered a distance of 4000 km. The Energy Management system selected for the parallel hybrid electric vehicle demonstrated fuel savings, which meant a reduction in emissions, which is the goal of any hybrid vehicle. Further investigations include more intelligent controllers to adjust the parameters of the energy management controller to allow for adaptation to various driving conditions, e.g. urban and motorway driving.
5

Nonlinear Constrained Component Optimization of a Plug-in Hybrid Electric Vehicle

Yildiz, Emrah Tolga 12 1900 (has links)
Indiana University-Purdue University Indianapolis (IUPUI) / Today transportation is one of the rapidly evolving technologies in the world. With the stringent mandatory emission regulations and high fuel prices, researchers and manufacturers are ever increasingly pushed to the frontiers of research in pursuit of alternative propulsion systems. Electrically propelled vehicles are one of the most promising solutions among all the other alternatives, as far as; reliability, availability, feasibility and safety issues are concerned. However, the shortcomings of a fully electric vehicle in fulfilling all performance requirements make the electrification of the conventional engine powered vehicles in the form of a plug-in hybrid electric vehicle (PHEV) the most feasible propulsion systems. The optimal combination of the properly sized components such as internal combustion engine, electric motor, energy storage unit are crucial for the vehicle to meet the performance requirements, improve fuel efficiency, reduce emissions, and cost effectiveness. In this thesis an application of Particle Swarm Optimization (PSO) approach to optimally size the vehicle powertrain components (e.g. engine power, electric motor power, and battery energy capacity) while meeting all the critical performance requirements, such as acceleration, grade and maximum speed is studied. Compared to conventional optimization methods, PSO handles the nonlinear constrained optimization problems more efficiently and precisely. The PHEV powertrain configuration with the determined sizes of the components has been used in a new vehicle model in PSAT (Powertrain System Analysis Toolkit) platform. The simulation results show that with the optimized component sizes of the PHEV vehicle (via PSO), the performance and the fuel efficiency of the vehicle are significantly improved. The optimal solution of the component sizes found in this research increased the performance and the fuel efficiency of the vehicle. Furthermore, after reaching the desired values of the component sizes that meet all the performance requirements, the overall emission of hazardous pollutants from the PHEV powertrain is included in the optimization problem in order to obtain updated PHEV component sizes that would also meet additional design specifications and requirements.
6

The modelling and control of an automotive drivetrain

Northcote, Nicholas M. 03 1900 (has links)
Thesis (MScEng (Mechanical and Mechatronic Engineering))--University of Stellenbosch, 2006. / Shunt and shuffle in a vehicle drivetrain are two driveability related phenomena responsible for driver discomfort. They are experienced as a sharp jerk (shunt) followed by a series of longitudinal oscillations (shuffle) and are induced by a rapid change in engine torque. The use of drive‐by‐wire throttles in modern day vehicles enables the onboard electronic control unit to manipulate the driver’s torque demand befoe sending a revised torque demand signal to the engine. In this way a feedback control system can be used to ensure that the drivetrain follows the driver’s torque demand as quickly s possible without inducing shunt or shuffle.      In this project a drivetrain model was derived and its parameters experimentally determined. The accuracy of the model was validated using test data from a vehicle, and the conclusion was made that the model was an accurate vehicle simulation tool. A drivetrain controller was then designed and its performance simulated using the vehicle model. The simulations showed that the controller significantly reduced the shunt and shuffle in the drivetrain thereby improving drier comfort.
7

An emulator of an engine-car system by an engine-dynamometer system

Lee, Wing Hong January 1980 (has links)
Thesis (Elec.E)--Massachusetts Institute of Technology, Dept. of Electrical Engineering and Computer Science, 1980. / MICROFICHE COPY AVAILABLE IN ARCHIVES AND ENGINEERING. / Includes bibliographical references. / by Wing Hong Lee. / Elec.E
8

Torsional vibration of powertrains : an investigation of some common assumptions

Guzzomi, Andrew Louis January 2007 (has links)
The area of powertrain dynamics has received considerable attention over a number of years. The recent introduction of more stringent emission requirements together with economic pressure has led to a particular focus on increasing powertrain efficiency. This has seen the incorporation of on-board, real-time measurements to predict system behaviour and engine condition. In this domain, accurate models for all powertrain components are important. One strategy to improve accuracy is to evaluate the assumptions made when deriving each model and then to address the simplifications that may introduce large errors. To this end, the aim of the work presented in this dissertation was to investigate the consequences of some of the more common assumptions and simplifications made in low frequency torsional powertrain models, and to propose improved models where appropriate. In particular, the effects of piston-tocylinder friction, crank/gudgeon pin offset, and the torsional behaviour of tyres were studied. Frequency and time domain models were used to investigate system behaviour and model predictions were compared with measurements on a small single cylinder engine. All time domain engine and powertrain models also include a variable inertia function for each reciprocating mechanism. It was found that piston-to-cylinder friction can increase the apparent inertia variation of a single reciprocating engine mechanism. This has implications for the nonlinear behaviour of engines and the drivetrains they are connected to. The effect of crank/gudgeon pin offset also modified the nonlinear behaviour of the mechanism. Though, for typical (small) gudgeon offset values these effects are small. However, for large offset values, achievable practically with crank offset, the modification to the nonlinear behaviour should not be ignored. The low frequency torsional damping properties of a small pneumatic tyre were found to be more accurately represented as hysteretic rather than viscous. Time domain modelling was then used to extend the results to a multi-cylinder engine powertrain and was achieved using the Time Domain Receptance (TDR) method. Various powertrain component TDRs were developed using Laplacians. Powertrain simulations showed that piston-to-cylinder friction can provide additional excitation to the system.

Page generated in 0.0555 seconds