• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 11
  • 2
  • Tagged with
  • 13
  • 5
  • 4
  • 4
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Minimal possible counterexamples to the two-dimensional Jacobian Conjecture

Horruitiner Mendoza, Rodrigo Manuel 12 June 2019 (has links)
Let K be an algebraically closed field of characteristic zero. The Jacobian Conjecture (JC) in dimension two stated by Keller in [8] says that any pair of polynomials P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (a Jacobian pair ) defines an automorphism of L via x-> P and y -> Q. It turns out that the Newton polygons of such a pair of polynomials are closely related, and by analyzing them, much information can be obtained on conditions that a Jacobian pair must satisfy. Specifically, if there exists a Jacobian pair that does not define an automorphism (a counterexample) then their Newton polygons have to satisfy very restrictive geometric conditions. Based mostly on the work in [1], we present an algorithm to give precise geometrical descriptions of possible counterexamples. This means that, assuming (P;Q) is a counterexample to the Jacobian Conjecture with gcd(deg(P); deg(Q)) = k, we can generate the possible shapes of the Newton Polygon of P and Q and how it transforms under certain linear automorphisms. By analyzing the minimal possible counterexamples, we sketch a path to increase the lower bound of max(deg(P); deg(Q)) to 125 for a minimal possible counterexample to the Jacobian Conjecture. / Sea K un cuerpo algebraicamente cerrado de característica zero. La Conjetura del Jacobiano en dimensión dos postulada por Keller en [8] dice que cualquier par de polinomios P;Q ∈ L := K[x; y] with [P;Q] := axPayQ - axQayP ∈ Kx (un par Jacobiano) define un automofismo de L via x-> P and y -> Q. Resulta que los polígonos de Newton de tal par de polinomios están relacionados íntimamente, y al analizarlos, mucha información puede ser obtenida sobre condiciones que un par Jacobiano debe satisfacer. Específicamente, si existe un par Jacobiano que no define un automorfismo (un contraejemplo) entonces sus polígonos de Newton deben satisfacer condiciones geométricas bastante restrictivas. Basado en gran parte en el trabajo en [1], presentamos un algoritmo para dar una descripción geométrica precisa de posibles contraejemplos. Esto significa que, asumiendo que (P;Q) es un contraejemplo a la Conjetura del Jacobiano con gcd(deg(P); deg(Q)) = k, podemos generar las posibles formas del Polígono de Newton de P y Q y cómo se transforman bajo ciertos automorfismos lineales. Al analizar los posibles contraejemplos minimales, esbozamos un camino para incrementar la cota inferior de max(deg(P); deg(Q)) a 125 para un posible contraejemplo minimal a la Conjetura del Jacobiano. / Tesis
12

Half-Isomorfismos de loops automórficos / Half-isomorphisms of automorphic loops

Anjos, Giliard Souza dos 09 March 2018 (has links)
Loops automórficos, ou A-loops, são loops nos quais todas as aplicações internas são automorfismos. Esta variedade de loops inclui grupos e loops de Moufang comutativos. Loops automórficos diedrais formam uma classe de A-loops construda a partir da duplicação de grupos abelianos finitos, generalizando a construção do grupo diedral. Outra classe de A-loops é a dos loops automórficos de Lie, construda a partir de anéis de Lie, definindo-se uma nova operação entre seus elementos. Um half-isomorfismo é uma bijeção f entre loops L e L\' onde, para quaisquer x e y pertencentes a L, temos que f(xy) pertence ao conjunto . Dizemos que o half-isomorfismo f é não trivial quando f não é um isomorfismo e nem um anti-isomorfismo. Nesta tese descrevemos propriedades de half-isomorfismos de loops, classificamos os half-isomorfismos entre loops automórficos diedrais e obtivemos o grupo de half-automorfismos nesta classe. Para os loops automórficos de Lie de ordem mpar, mostramos que todo half-automorfismo é trivial. / Automorphic loops, or A-loops, are loops in which every inner mapping is an automorphism. This variety of loops includes groups and commutative Moufang loops. Dihedral automorphic loops form a class of A-loops, constructed from the duplication of finite abelian groups, that generalizes the construction of the dihedral group. Another class of A-loops is the Lie automorphic loops, constructed from Lie rings, where a new operation between its elements is defined. A half-isomorphism is a bijection f between loops L and L\' where, for any x and y belong to L, we have that f(xy) belongs to the set {f(x)f(y),f(y)f(x)}. We say that half-isomorphism f is non trivial when f is neither an isomorphism nor an anti-isomorphism. In this thesis, we describe properties of half-isomorphisms of loops, we classify the half-isomorphisms between dihedral automorphic loops and we obtain the group of half-automorphisms in this class. For the Lie automorphic loops of odd order, we show that every half-automorphism is trivial.
13

Half-Isomorfismos de loops automórficos / Half-isomorphisms of automorphic loops

Giliard Souza dos Anjos 09 March 2018 (has links)
Loops automórficos, ou A-loops, são loops nos quais todas as aplicações internas são automorfismos. Esta variedade de loops inclui grupos e loops de Moufang comutativos. Loops automórficos diedrais formam uma classe de A-loops construda a partir da duplicação de grupos abelianos finitos, generalizando a construção do grupo diedral. Outra classe de A-loops é a dos loops automórficos de Lie, construda a partir de anéis de Lie, definindo-se uma nova operação entre seus elementos. Um half-isomorfismo é uma bijeção f entre loops L e L\' onde, para quaisquer x e y pertencentes a L, temos que f(xy) pertence ao conjunto . Dizemos que o half-isomorfismo f é não trivial quando f não é um isomorfismo e nem um anti-isomorfismo. Nesta tese descrevemos propriedades de half-isomorfismos de loops, classificamos os half-isomorfismos entre loops automórficos diedrais e obtivemos o grupo de half-automorfismos nesta classe. Para os loops automórficos de Lie de ordem mpar, mostramos que todo half-automorfismo é trivial. / Automorphic loops, or A-loops, are loops in which every inner mapping is an automorphism. This variety of loops includes groups and commutative Moufang loops. Dihedral automorphic loops form a class of A-loops, constructed from the duplication of finite abelian groups, that generalizes the construction of the dihedral group. Another class of A-loops is the Lie automorphic loops, constructed from Lie rings, where a new operation between its elements is defined. A half-isomorphism is a bijection f between loops L and L\' where, for any x and y belong to L, we have that f(xy) belongs to the set {f(x)f(y),f(y)f(x)}. We say that half-isomorphism f is non trivial when f is neither an isomorphism nor an anti-isomorphism. In this thesis, we describe properties of half-isomorphisms of loops, we classify the half-isomorphisms between dihedral automorphic loops and we obtain the group of half-automorphisms in this class. For the Lie automorphic loops of odd order, we show that every half-automorphism is trivial.

Page generated in 0.153 seconds