• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 253
  • 133
  • 94
  • 27
  • 26
  • 10
  • 8
  • 6
  • 4
  • 4
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 702
  • 192
  • 116
  • 110
  • 102
  • 99
  • 97
  • 59
  • 59
  • 57
  • 54
  • 53
  • 52
  • 51
  • 47
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
341

Investigating the Role of Autophagy in Intracellular Apolipoprotein B Traffic and Very-low-density-lipoprotein Assembly and Secretion

Christian, Patricia 21 November 2013 (has links)
Apolipoprotein B (apoB) is the main protein of very-low-density lipoprotein (VLDL). As apoB is translated and moves through the secretory pathway, lipids from cytoplasmic lipid droplets (LDs) are added to form VLDL particles. Without adequate lipid availability, apoB is misfolded and undergoes proteasomal degradation; however, evidence now shows that apoB can be degraded through autophagy. Inhibiting autophagy decreased apoB localization to autophagosomes in HepG2 cells, but also decreased apoB recovered from cells and media. Inducing autophagy increased apoB localization to autophagosomes and decreased apoB recovery. LDs are also degraded through autophagy however LDs were not affected by autophagy modulation in HepG2 cells. In primary hamster hepatocytes, inhibiting autophagy reduced apoB-autophagosome co-localization and increased LD numbers. These data suggest that autophagy may play a complex role in VLDL assembly by regulating degradation of both apoB and LDs. This dual role is more evident in primary hepatocytes indicating a potential physiological role.
342

Dynamic Interplay Between Kaposi's Sarcoma-Associated Herpesvirus Latent Proteins in the Control of Oncogene-Induced Senescence

Leidal, Andrew Michael 10 April 2012 (has links)
Acute oncogenic stress can activate autophagy and facilitate permanent arrest of the cell cycle through a failsafe mechanism known as oncogene-induced senescence (OIS). Kaposi's sarcoma-associated herpesvirus (KSHV) is the etiologic agent of Kaposi’s Sarcoma (KS) and has been reported to encode oncoproteins within its latency program that engage host autophagy and OIS pathways; however, the mechanisms by which KSHV oncoproteins promote KS tumorigenesis remain unclear. Here, I demonstrate that ectopic expression of the latent KSHV protein viral cyclin (v-cyclin) deregulates the cell cycle, induces DNA-damage responses (DDRs) and promotes OIS through an autophagy-dependent mechanism. During latency, v-cyclin is co-expressed from a single transcript with a viral homolog of FLICE-inhibitory protein (v-FLIP) that blocks autophagy by binding and inhibiting Atg3. Co-expression of v-FLIP has no effect on DDRs, but efficiently blocks v-cyclin-induced autophagy and senescence. Remarkably, suppression of v-FLIP function during KSHV latency, through specific inhibitory peptides, rescues host cell autophagy and induces senescence of infected cells. Together, these data reveal a coordinated viral gene-expression program that subverts autophagy, impairs senescence, and facilitates the proliferation of KSHV-infected cells.
343

La sécrétion de la protéine Tau : nouveau mécanisme de propagation de la pathologie de Tau dans la maladie d'Alzheimer

Plouffe, Vanessa 12 1900 (has links)
Tau est une protéine associée aux microtubules enrichie dans l’axone. Dans la maladie d’Alzheimer, Tau devient anormalement hyperphosphorylée, s’accumule dans le compartiment somato-dendritique et s’agrège pour former des enchevêtrements neurofibrillaires (NFTs). Ces NFTs se propagent dans le cerveau dans un ordre bien précis. Ils apparaissent d’abord dans le cortex transenthorinal pour ensuite se propager là où ces neurones projettent, c’est-à-dire au cortex entorhinal. Les NFTs s’étendent ensuite à l’hippocampe puis à différentes régions du cortex et néocortex. De plus, des études récentes ont démontré que la protéine Tau peut être sécrétée par des lignées neuronales et que lorsqu’on injecte des agrégats de Tau dans un cerveau de souris, ceux-ci peuvent pénétrer dans les neurones et induire la pathologie de Tau dans le cerveau. Ces observations ont mené à l’hypothèse que la protéine Tau pathologique pourrait être sécrétée par les neurones, pour ensuite être endocytée par les cellules avoisinantes et ainsi propager la maladie. L’objectif de la présente étude était donc de prouver la sécrétion de la protéine Tau par les neurones et d’identifier par quelle voie elle est secrétée. Nos résultats ont permis de démontrer que la protéine Tau est sécrétée par des neurones corticaux de souris de type sauvage ainsi que dans un modèle de surexpression dans des cellules HeLa et PC12. Nos résultats indiquent que la sécrétion de Tau se ferait par les autophagosomes. Finalement, nous avons démontré que la protéine Tau sécrétée est déphosphorylée et clivée par rapport à la protéine Tau intracellulaire non sécrétée. / Tau, a microtubule-associated protein, is enriched in the axon. In Alzheimer’s disease, Tau becomes hyperphosphorylated, redistributes to the somato-dendritic compartment and forms aggregates called neurofibrillary tangles (NFTs). The NFTs propagates in a predictable manner in particular neuronal networks. Indeed, they appear in the trans-entorhinal region and then propagate to the entorhinal cortex where the trans-entorhinal cortex projects. Then, the NFTs propagate to the hippocampus and to different regions of the cortex and neocortex. Recent studies have reported that Tau can be secreted by neuronal cell lines. Besides, when aggregates of Tau protein were injected in mouse brain, they could enter neurons and induced Tau pathology. Based on those observations, it was speculated that Tau could be secreted by neurons and then captured by neighbouring cells to propagate Tau pathology in the brain. The goal of the present study was to prove that Tau can be secreted by neurons and to find the secretory pathway involved in Tau secretion. Moreover, the phosphorylation state of Tau protein was examined and compared to intracellular non-secreted Tau. Our results showed that Tau is secreted by cortical neurons isolated from wild-type mice and by HeLa and PC12 cells overexpressing human Tau. Our results also indicated that autophagosomes would be involved in Tau secretion. Finally, we found that secreted Tau was dephosphorylated and cleaved compared to the non-secreted intracellular Tau.
344

Investigating the Role of Autophagy in Intracellular Apolipoprotein B Traffic and Very-low-density-lipoprotein Assembly and Secretion

Christian, Patricia 21 November 2013 (has links)
Apolipoprotein B (apoB) is the main protein of very-low-density lipoprotein (VLDL). As apoB is translated and moves through the secretory pathway, lipids from cytoplasmic lipid droplets (LDs) are added to form VLDL particles. Without adequate lipid availability, apoB is misfolded and undergoes proteasomal degradation; however, evidence now shows that apoB can be degraded through autophagy. Inhibiting autophagy decreased apoB localization to autophagosomes in HepG2 cells, but also decreased apoB recovered from cells and media. Inducing autophagy increased apoB localization to autophagosomes and decreased apoB recovery. LDs are also degraded through autophagy however LDs were not affected by autophagy modulation in HepG2 cells. In primary hamster hepatocytes, inhibiting autophagy reduced apoB-autophagosome co-localization and increased LD numbers. These data suggest that autophagy may play a complex role in VLDL assembly by regulating degradation of both apoB and LDs. This dual role is more evident in primary hepatocytes indicating a potential physiological role.
345

Autophagy Regulates Expression of Argonaute 2, a Critical Regulator of the MicroRNA Silencing Pathway

Sibony, Michal 15 November 2013 (has links)
Genome-wide association studies have implicated autophagy in Crohn’s Disease (CD) pathogenesis. The functional relevance of autophagy in CD remains unknown. I hypothesized that autophagy is involved in microRNA silencing, another process implicated in CD pathogenesis. MicroRNAs are short non-coding RNAs that are loaded onto RNA-induced silencing complex (RISC) and promote degradation and/or repress translation of target mRNAs. RISC formation and turnover occurs on endosomal membranes. Since autophagosomes and endosomes are closely related and RISC components are downstream effectors of microRNA silencing, I hypothesized that autophagy affects RISC, hence modulates microRNA expression. Using immunoblotting and immunofluorescence, I showed that Ago2, a critical component of RISC, is increased in cells with defective autophagy. Using microarray technology, I discovered 5 microRNAs that are differentially expressed in these cells. Taken together, my results propose a compelling mechanism by which autophagy regulates Ago2, thereby affects miRNA expression, which is implicated in the development of CD.
346

Autophagy Regulates Expression of Argonaute 2, a Critical Regulator of the MicroRNA Silencing Pathway

Sibony, Michal 15 November 2013 (has links)
Genome-wide association studies have implicated autophagy in Crohn’s Disease (CD) pathogenesis. The functional relevance of autophagy in CD remains unknown. I hypothesized that autophagy is involved in microRNA silencing, another process implicated in CD pathogenesis. MicroRNAs are short non-coding RNAs that are loaded onto RNA-induced silencing complex (RISC) and promote degradation and/or repress translation of target mRNAs. RISC formation and turnover occurs on endosomal membranes. Since autophagosomes and endosomes are closely related and RISC components are downstream effectors of microRNA silencing, I hypothesized that autophagy affects RISC, hence modulates microRNA expression. Using immunoblotting and immunofluorescence, I showed that Ago2, a critical component of RISC, is increased in cells with defective autophagy. Using microarray technology, I discovered 5 microRNAs that are differentially expressed in these cells. Taken together, my results propose a compelling mechanism by which autophagy regulates Ago2, thereby affects miRNA expression, which is implicated in the development of CD.
347

The Role of Autophagy and Translation Initiation Factors in Overcoming Resistance to mTOR Inhibitors in Prostate Cancer.

Herbert, James Taylor January 2013 (has links)
<p>Castration resistant prostate cancer (CRPC) causes significant morbidity and mortality around the world and improving treatment options for patients with CRPC is a major concern for biomedical research. Because of the importance of activating mutations in the PI3K/AKT/mTOR pathway in prostate cancer, several mTOR inhibitors have been tested for efficacy in CRPC but despite promising preclinical findings, the results of clinical trials have been disappointing. The findings of several groups, including a clinical trial of RAD001 conducted at Duke, suggest that feedback upregulation of PI3K and autophagy may be potential mechanisms for resistance of CRPC to mTOR inhibitor therapy. </p><p> The main goal of this dissertation was to explore these mechanisms in vitro and to determine if combinations of PI3K inhibitors and different classes of mTOR inhibitors can overcome resistance to mTOR inhibitor monotherapy. In particular, we used immunoblotting, reverse phase protein microarrays, polysome profile analysis, cell cycle analysis, and several techniques for determining cell survival and proliferation to explore the differences in survival, proliferation, autophagy, and activity of the AKT, translation initiation, and autophagy cell signaling networks between prostate cancer cell lines treated with different combinations of mTOR and PI3K inhibitors. Our findings revealed that the combination of PI3K and mTOR inhibition leads to a synergistic inhibition of prostate cancer cell survival and cytostasis that is correlated decreased translation rates, hypophosphorylation of 4E-BP1, autophagy, and an uncoupling of normal signaling between AKT and mTOR. We were able produce an effect on cell survival similar to treatment with high doses of mTOR/PI3K inhibitor combinations by inhibiting cap-dependent translation using a non-phosphorylatable mutant of 4E-BP1. In contrast, knocking down two major autophagy genes had little to no effect on the survival of prostate cancer cells treated with PI3K/mTOR inhibitors but did protect from cell death caused by the UPR activator tunicamycin. </p><p> We conclude that treatment strategies that target PI3K, mTORC1 and mTORC2 simultaneously have the potential to be clinically useful in CRPC, probably due to the increased inhibition of eIF4E activity and cap-dependent translation when compared to monotherapy with allosteric mTORC1 inhibitors. Although autophagic cell death can be induced in prostate cancer cells, the autophagy observed after inhibition of PI3K and mTOR does not appear to contribute to cell death and is not a major resistance mechanism under these conditions. Nevertheless, we did observe different roles for autophagy in the survival of cells exposed to different types of stressors, and further elucidation of autophagy signaling networks may yet provide useful clinical targets.</p> / Dissertation
348

Mechanisms of Bacterial Expulsion as a Cell Autonomous Defense Strategy In the Bladder Epithelium

Miao, Yuxuan January 2015 (has links)
<p>Due to its close proximity to the gastrointestinal tract, the human urinary tract is</p><p>subjected to constant barrage by gut-­associated bacteria. However, for the most part, this tract has resisted infection by various microbes. The impregnability of the urinary tract to microbial colonization is attributable to the ability of the bladder to promptly sense and mount robust responses to microbial challenge. A powerful mechanism for the elimination of invading bacteria was recently described in bladder epithelial cells, involving non-­lytic ejection of intracellular bacteria back into the extracellular milieu. In spite of the effectiveness of this defense strategy, much of the underlying mechanisms surrounding how this powerful cellular defense activity detects intracellular UPEC and shuttles them from their intracellular location to the plasma membrane of BECs to be exported remains largely a mystery.</p><p> Here, we describe uropathogenic E.coli (UPEC) expelled from infected bladder</p><p>epithelium cells (BECs) within membrane-­bound vesicles as a distinct cellular defense</p><p>response. Examination of the intracellular UPEC revealed that intracellular bacteria were</p><p>initially processed via autophagy, the conventional degradative pathway, then delivered</p><p>into multivesicular bodies (MVBs) and encapsulated in nascent intraluminal vesicle membrane. We further show the bacterial expulsion is triggered when intracellular UPEC follow the natural degradative trafficking pathway and reach lysosomes and attempt to neutralize its pH to avoid degradation. This pathogen-­mediated activity is detected by mucolipin TRP channel 3 (TRPML3), a transient receptor potential cation channel localized on lysosomes, which spontaneously initiates lysosome exocytosis resulting in expulsion of exosome-­encased bacteria. These studies reveal a cellular default system for lysosome homeostasis and also, how it is coopted by the autonomous defense program to clear recalcitrant pathogens.</p> / Dissertation
349

Preferential Estrogen Receptor β Ligands Inhibit Proliferation and Reduce Bcl-2 Expression in Fulvestrant-resistant Breast Cancer Cells

Ruddy, Samantha 18 January 2013 (has links)
Endocrine resistance is a significant clinical problem in the treatment of estrogen (E2) receptor positive breast cancers. There are two ER subtypes, ERα and ERβ, which promote and inhibit breast cancer cell proliferation respectively. While ER positive breast cancers typically express a high ratio of ERα to ERβ, the acquisition of antiestrogen resistance in vitro and in vivo is associated with increased relative expression of the ERβ. On some gene enhancers ERβ has been shown to function in opposition to the ERα in the presence of E2. Here we demonstrate that exposure to two different ERβ agonists results in decreased cell viability, and produced a marked reduction in G2/M phase in antiestrogen resistant breast cancer cell line in conjunction with altered cyclin D1, and cyclin E expression relative to E2. ERβ agonists also strongly downregulated Bcl-2 expression and recruited both ERs to the Bcl-2 and pS2 E2-response elements resulting in a reduction in mRNA transcripts from both of these genes. Bcl-2 reduction correlated with increased lipidation of LC3-I to LC3-II, indicative of increased autophagic flux. Although ERβ agonist treatment alone did not induce apoptosis, remarkably, the coaddition of ERβ agonist and the autophagy inhibitor, chloroquine, resulted in robust cell death. Lastly, in vivo studies demonstrate that preferential-ERβ agonists are not estrogenic in the uterus or mammary gland. Together, these observations suggest that combined therapies including an ERβ agonist and an autophagy inhibitor may provide the basis for a safe, novel approach to the treatment of antiestrogen-resistant breast cancers.
350

Defining the roles of autophagy in ovarian carcinoma

Spowart, Jaeline E. 17 July 2012 (has links)
Ovarian cancer is a significant concern for women’s health as it is the most lethal of all gynaecological malignancies. One of the reasons for the high mortality of this disease is that traditionally used chemotherapeutic treatments tend to have poor initial or sustained efficacy against ovarian tumours. Resistance to such treatments may in part be mediated by autophagy, a cell survival process in which unnecessary or damaged components of the cytoplasm are engulfed within a double-membraned vesicle known as an autophagosome and ultimately degraded upon fusion of the autophagosome with a lysosome. Autophagy has been shown to be employed by cells to aid in their survival under stresses such as nutrient deprivation, hypoxia, chemotherapy treatment, and growth factor withdrawal. As these stresses are commonly encountered by ovarian cancer cells, it is possible that autophagy promotes ovarian cancer cell survival. This thesis aims to investigate which stimuli induce autophagy in ovarian cancer cells and whether or not this induction can promote cell survival. In addition, there is a particular focus on the comparison of autophagy utilization between subtypes of ovarian cancer, as the subtypes are in fact considered different diseases and may vary in their usage of autophagy. The first chapter of this thesis provides relevant background information on autophagy as well as ovarian cancer and its subtypes. In the second chapter, I describe studies in which tumours from a large cohort of patients with ovarian cancer are assessed for LC3A, a marker of autophagy, in addition to markers of other cellular processes including hypoxia. Here I found that LC3A was significantly associated with poor patient survival in patients with the clear cell subtype of ovarian cancer, but not other subtypes. I also found that LC3A expression was associated with markers of hypoxia in the clear cell patient tumours and that clear cell carcinoma cell lines preferentially induced autophagy in response to hypoxia in vitro as compared to cell lines of the high-grade serous subtype. These results indicate that clear cell ovarian tumours are uniquely dependent upon autophagy in response to hypoxia. In the third chapter, I investigated the autophagic response to treatment with the standard ovarian cancer chemotherapy drugs carboplatin and paclitaxel in a syngeneic mouse model of ovarian cancer. I found that these drugs did indeed induce autophagy and that the cancer cells utilized autophagy to promote resistance to these chemotherapeutics. In addition, when the tumour cells were grown in syngeneic mice, treatment with the autophagy inhibitor hydroxychloroquine resulted in a significant suppression of tumour growth. Together, my findings indicate that further investigation into the use of autophagy inhibitors in ovarian cancer patients is warranted and that different specific rational drug combinations for each subtype will likely yield optimal results. / Graduate

Page generated in 0.0368 seconds