• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 9
  • 6
  • 3
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 44
  • 44
  • 21
  • 18
  • 17
  • 16
  • 14
  • 13
  • 12
  • 10
  • 9
  • 9
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Design of a single-sided axial flux PM in-wheel electric vehicle machine with non-overlap stator windings

Kierstead, Harold Junior 12 1900 (has links)
Thesis (MScEng (Electrical and Electronic Engineering))--University of Stellenbosch, 2009. / ENGLISH ABSTRACT: With the current worldwide energy problems electric vehicles are set to replace conventional combustion engine vehicles. Electric vehicles with gearless in-wheel mounted brushless permanent magnet motors provide a more flexible and efficient means of vehicle propulsion but the electric motors, particularly the non-overlap stator winding type have not been fully researched. This study focuses on the selection and design of suitable in-wheel hub drive machine. Several machine topologies are evaluated and the single-sided axial flux machine is chosen. The average vehicle requirements are determined and design optimisations are carried with the aid of finite element analysis and an optimisation algorithm. A comparison of torque quality between single-layer and double-layer machines is carried out and it is found that double-layer machines have the least torque ripple and single-layer machines with un-equal teeth the best torque per ripple characteristics. A 16 kW, 30-pole 27-slot prototype machine optimised for power density is built, and it is found fitting for the application meeting the design requirements. The prototype machine is extensively tested and good agreement is found between finite element and measured results. The well known axial flux attraction forces are encountered in the prototype machine and they are overcome by suitable bearing selection and mechanical design. It is found that theoretical and measured cogging torques are inconsistent, the reason for this is that practical machines are not absolutely ideal due to material and manufacturing tolerances. Excessive rotor losses are found in the prototype machine and appropriate methods for their reduction are presented. This work does not aim to find the best in-wheel hub drive solution, but instead looks to uncover some of the technical available solutions. / AFRIKAANSE OPSOMMING: Met die huidige wêreldwye energie probleme, is elektriese voertuie bestem om konvensionele binnebrandenjin voertuie te vervang. Elektriese voertuie met ratlose binnewiel-geleë borsellose permanente magneet motors, voorsien „n meer aanpasbare en effektiewe metode van voertuig aandrywing, maar die elektriese motors, veral die oorvleulende stator winding tipe is nog nie ten volle nagevors nie. Hierdie studie fokus op die keuse en ontwerp van „n binnewiel aandryf masjien. Verskeie masjien uitlegte word geëvalueer en „n enkelkant aksiaalvloed masjien is gekies. Die gemiddelde voertuig behoeftes word bepaal en ontwerp optimalisering word uitgevoer met behulp van eindige element analise en „n optimaliserings algoritme. Enkellaag en dubbellaag masjiene se draaimoment kwaliteit word vergelyk. Die bevinding is dat dubbellaag masjiene die laagste draaimoment rimpel toon terwyl die enkellaag masjiene, met oneweredige tande, die beste draaimoment per rimpel karakteristieke toon. „n 16 kW, 30 pool, 27 gleuf prototipe masjien, wat vir drywingsdigtheid ge-optimaliseer is, is gebou en is geskik vir die toepassing en die vereistes. Die prototipe masjien is getoets en goeie vergelykings word getref tussen die eindige element analise en die gemete resultate. Die alom bekende aksiaal vloed aantrekkings kragte word in die prototipe masjien gesien en word oorkom deur die regte rollaer keuse en meganiese ontwerp. Nog „n bevinding is dat die teoretiese en gemete waardes vir die vertandings draaimoment nie ooreenstem nie. Die rede hiervoor is dat die praktiese masjien nie ideaal is in terme van materiaal en vervaardigings toleransies nie. Groot rotor verliese in die prototipe masjien is gevind en goeie metodes vir die minimering daarvan word voorgestel. Hierdie werk is nie „n soektog na die beste binnewiel aandrywings oplossing nie, maar mik eerder om sommige van die tegniese beskikbare oplossings te onthul.
12

Methodology for designing megawatt-scale yokeless and segmented armature (YASA) generators for wind turbines

Vun, Sook Teng January 2016 (has links)
This thesis develops design methodologies for megawatt(MW)-scale yokeless and segmented armature (YASA) generators for wind turbine applications. The methodologies include the electromagnetic, the structural and the thermal designs of a YASA generator. The design process starts with developing an analytical method to generate preliminary machine designs for a megawatt-scale YASA generator. This analytical approach considers both electromagnetic and structural aspects of a generator, the parameters of which were obtained and visualised on a design reference map. This new concept of displaying machine parameters is useful for a designer to identify the relationship between them. An optimisation tool using pseudo-weight approach is integrated into the analytical tool to determine a optimum machine design. This is a flexible optimisation tool, allowing the user to give priorities to each objective function. The analytical calculation has reduced the design space for suitable machine candidates to be applied in further finite element analysis (FEM). In finite element analysis of an optimised YASA machine, the electromagnetic performance of a 1 MW YASA generator was produced and verified with analytical and experiment results. This is followed by structural optimisation with finite element method, where a spider wheel with a support ring geometry is applied to the rotor plate. This reduces the structural weight by more than 50% while the structure retain strong stiffness. Finally, the cooling system of the stator of the YASA generator is studied and the cooling channels design is proposed. Simulation results show that the stator of a 1 MW YASA generator can be effectively cooled with forced air.
13

Análise da máquina Torus sob frenagem eletrodinâmica

Osório, Jonas Obert Martins January 2011 (has links)
Este trabalho foi desenvolvido com o objetivo de estudar a aplicação, para sistema de frenagem veicular, de uma máquina elétrica sem escovas, de armadura toroidal, e fluxo magnético axial produzido por ímãs permanentes de terras raras, a chamada máquina Torus. A máquina foi construída no LMEAE e estudada inicialmente como motor em outro trabalho. Mas, para que se possa avaliar seu funcionamento em sistema de frenagem, o foco é do ponto de vista da máquina como gerador. São realizados testes dinâmicos e estáticos experimentalmente e modelo numérico pelo método dos elementos finitos com um formato de ímãs permanentes de seção setorial, possibilitando o comparativo com a versão anterior da máquina que empregou ímãs de seção quadrada. Mudanças físicas e no sistema de acionamento da máquina, e ensaios de frenagem dinâmica foram realizados. Modelagem analítica para indução magnética foi desenvolvida utilizando-se da técnica de Transformação Conforme. O trabalho busca apresentar as características da máquina e justificativas que demonstram o seu potencial de aplicabilidade em um subsistema veicular sob frenagem regenerativa e a capacidade de fornecimento de energia a um sistema de armazenamento com uma parte de energia cinética, ou seja, baterias e supercapacitores. / This work is carried out with the aim to study the application, by a vehicular braking system, of a brushless electrical machine with a toroidal armature core, and axial magnetic flux delivered by rare earth permanent magnets, the so-called Torus machine. The machine was built in the LMEAE, and previously studied as a motor by other work. However, in order to assess its performance in a braking system, the focus is the point of view of the machine as a generator. Static and dynamic tests are implemented as well as a numerical model by means of the finite element method, in order to compare the machine with sector poles permanent magnets and with square magnet poles. Physical changes and on the driving system of the machine, and dynamic braking tests are performed. The analytical modelling for the magnetic induction was developed using the technique of conformal transformation. The study aims to present the features of the machine and demonstrates its potential applicability to a vehicular subsystem under regenerative braking and the ability to supply an energy storage system with part of the kinetic energy, i.e. batteries and super capacitors.
14

Étude et dimensionnement de machine à flux axial pour le véhicule hybride électrique / Design and optimization of Axial flux machine for hybrid vehicle

Boussey, Thomas 12 March 2018 (has links)
Dans le cadre du développement du véhicule électrique hybride, les machines électriques pour la traction sont l’objet d’un effort toujours plus important de recherche et de développement. En particulier, les contraintes d’encombrement allouées à ces machines sont toujours plus sévères et la recherche se porte vers des structures de machines compactes. C’est dans ce contexte que nos travaux se sont portés sur l’étude et le dimensionnement de machine à flux axial pour une application hybridation douce (Mild Hybrid) d’alterno-démarreur monté sur vilebrequin de puissance 50 kW et de couple 205 Nm en régime transitoire. Un état de l’art des machines à flux axial est présenté. Une analyse des configurations de bobinage avec la méthode de l’étoile des encoches est détaillée. Un début d’analyse de la machine à commutation de flux est proposé. La méthodologie de dimensionnement est étayée. Elle repose sur des études de sensibilité, un dimensionnement paramétrique, mais aussi une optimisation de la machine. Les modèles utilisés sont de type éléments finis et surface de réponse par plan d’expériences. Enfin, une étude thermique de la machine est effectuée et des pistes sont données pour l’amélioration de l’échange thermique par refroidissement diphasique. / In the context of development of the hybrid electric vehicle, electric machines for traction are under extensive investigation. In particular, volume constraints are more and more severe and research is carried out towards compact structures. This work is focused on the study and the design of axial flux machine for a mild-hybrid application of an integrated starter generator mounted on the crankshaft. Its ratings in transient mode are 50 kW and 205 Nm. A literature review of axial flux machines is presented. A analysis of winding configurations with star of slots method is detailed. A beginning of analysis of switching-flux machine is proposed. The methodology of design is detailed. It is based on sensitivity analysis, parametric design and optimization of the machine. Utilized models are finite element model and response surface by design of experiments. Finally, a thermal study of the machine is carried out and some ideas are given to improve the thermal exchange by diphase cooling.
15

Análise da máquina Torus sob frenagem eletrodinâmica

Osório, Jonas Obert Martins January 2011 (has links)
Este trabalho foi desenvolvido com o objetivo de estudar a aplicação, para sistema de frenagem veicular, de uma máquina elétrica sem escovas, de armadura toroidal, e fluxo magnético axial produzido por ímãs permanentes de terras raras, a chamada máquina Torus. A máquina foi construída no LMEAE e estudada inicialmente como motor em outro trabalho. Mas, para que se possa avaliar seu funcionamento em sistema de frenagem, o foco é do ponto de vista da máquina como gerador. São realizados testes dinâmicos e estáticos experimentalmente e modelo numérico pelo método dos elementos finitos com um formato de ímãs permanentes de seção setorial, possibilitando o comparativo com a versão anterior da máquina que empregou ímãs de seção quadrada. Mudanças físicas e no sistema de acionamento da máquina, e ensaios de frenagem dinâmica foram realizados. Modelagem analítica para indução magnética foi desenvolvida utilizando-se da técnica de Transformação Conforme. O trabalho busca apresentar as características da máquina e justificativas que demonstram o seu potencial de aplicabilidade em um subsistema veicular sob frenagem regenerativa e a capacidade de fornecimento de energia a um sistema de armazenamento com uma parte de energia cinética, ou seja, baterias e supercapacitores. / This work is carried out with the aim to study the application, by a vehicular braking system, of a brushless electrical machine with a toroidal armature core, and axial magnetic flux delivered by rare earth permanent magnets, the so-called Torus machine. The machine was built in the LMEAE, and previously studied as a motor by other work. However, in order to assess its performance in a braking system, the focus is the point of view of the machine as a generator. Static and dynamic tests are implemented as well as a numerical model by means of the finite element method, in order to compare the machine with sector poles permanent magnets and with square magnet poles. Physical changes and on the driving system of the machine, and dynamic braking tests are performed. The analytical modelling for the magnetic induction was developed using the technique of conformal transformation. The study aims to present the features of the machine and demonstrates its potential applicability to a vehicular subsystem under regenerative braking and the ability to supply an energy storage system with part of the kinetic energy, i.e. batteries and super capacitors.
16

Análise da máquina Torus sob frenagem eletrodinâmica

Osório, Jonas Obert Martins January 2011 (has links)
Este trabalho foi desenvolvido com o objetivo de estudar a aplicação, para sistema de frenagem veicular, de uma máquina elétrica sem escovas, de armadura toroidal, e fluxo magnético axial produzido por ímãs permanentes de terras raras, a chamada máquina Torus. A máquina foi construída no LMEAE e estudada inicialmente como motor em outro trabalho. Mas, para que se possa avaliar seu funcionamento em sistema de frenagem, o foco é do ponto de vista da máquina como gerador. São realizados testes dinâmicos e estáticos experimentalmente e modelo numérico pelo método dos elementos finitos com um formato de ímãs permanentes de seção setorial, possibilitando o comparativo com a versão anterior da máquina que empregou ímãs de seção quadrada. Mudanças físicas e no sistema de acionamento da máquina, e ensaios de frenagem dinâmica foram realizados. Modelagem analítica para indução magnética foi desenvolvida utilizando-se da técnica de Transformação Conforme. O trabalho busca apresentar as características da máquina e justificativas que demonstram o seu potencial de aplicabilidade em um subsistema veicular sob frenagem regenerativa e a capacidade de fornecimento de energia a um sistema de armazenamento com uma parte de energia cinética, ou seja, baterias e supercapacitores. / This work is carried out with the aim to study the application, by a vehicular braking system, of a brushless electrical machine with a toroidal armature core, and axial magnetic flux delivered by rare earth permanent magnets, the so-called Torus machine. The machine was built in the LMEAE, and previously studied as a motor by other work. However, in order to assess its performance in a braking system, the focus is the point of view of the machine as a generator. Static and dynamic tests are implemented as well as a numerical model by means of the finite element method, in order to compare the machine with sector poles permanent magnets and with square magnet poles. Physical changes and on the driving system of the machine, and dynamic braking tests are performed. The analytical modelling for the magnetic induction was developed using the technique of conformal transformation. The study aims to present the features of the machine and demonstrates its potential applicability to a vehicular subsystem under regenerative braking and the ability to supply an energy storage system with part of the kinetic energy, i.e. batteries and super capacitors.
17

Motor-generátor pro vírovou turbínu / Motor-Generator For Swirl Turbine

Huzlík, Rostislav January 2015 (has links)
The aim of this doctoral thesis is to design a motor-generator for swirl turbine. Swirl turbine is a relatively new type of turbine developed at the Department of Fluid Engineering Viktor Kaplan Energy Institute FME BUT. Swirl turbine is designed for use on small head, where the classical types of turbines either poor efficacy or are economically disadvantaged. As suitable construction for the motor-generator was selected synchronous machine with permanent magnets and with axial magnetic flow with coreless stator. As part of the work is carried out calculating the properties of turbines for defined operating point simulation model of the turbine. After already made draft motor-generator to optimally meet the characteristics of the turbine. The complete design of the motor-generator is validated by calculating the finite element method models. Designed machine must be able to work as a generator and as a motor, if it was necessary to use a turbine as a pump.
18

On The Mechanical Design of Power Dense Axial Flux Permanent Magnet Synchronous Motors for Aircraft Propulsion Applications

Duperly, Federico January 2024 (has links)
Traffic congestion in large urban and metropolitan areas is a substantial problem plaguing these areas. Not only are commuters losing valuable time, but greenhouse gas emissions are substantially worse because of congestion. Considerable research and development into next generation electrified aircraft is ongoing to introduce air mobility as a viable new means of transporting people and goods across long commutes. This development extends into commercial aviation as a whole as a means of reducing the industry’s carbon footprint with new aircraft designs that employ electrified propulsion systems. Many electrified aircraft projects are currently underway, ranging from small commuter aircraft all the way to large twin-aisle aircraft, and part of the development scope for alot of these projects is creating highly robust and power dense electric machines that replace the current state-of-the-art. The axial flux permanent magnet synchronous machine is an exciting candidate for aircraft propulsion due to its exceptional torque density and compact axial nature. In this thesis, the mechanical design for three generations of axial flux permanent magnet synchronous machines is discussed. These machines serve as development phase prototypes for machines that are ultimately intended for propulsion applications in commercial aviation, particularly for eVTOL aircraft. The motivation for electrification in the commercial aviation industry is discussed, followed by an overview of the development landscape for electrified propulsion systems in commercial aviation, focusing primarily on electric machines that are currently state-of-the-art or are set to be in the near future, as well as what is required for future electric machines in terms of power output and power density. The axial flux architecture is then presented, including a high-level comparison to the radial-flux architecture, an overview of the various axial flux machine designs and topologies, and a discussion of the inherent mechanical design challenges associated with the axial flux architecture. The yokeless and segmented armature axial flux permanent magnet synchronous machine design was selected for the machines developed as part of the research for this thesis, and the discussion of the mechanical design of these machines is broken up into the two core sub assemblies: stator assembly and rotating assembly. High-level design methodologies are introduced for both sub-assemblies, which is further broken down into different approaches pertaining to each generation. The first and second generation designs are presented at a high level, followed by deep-dives into the complete mechanical design for the third generation stator, the bearing selection, arrangement, and analysis for the third generation rotating assembly, and adhesive characterization trials used to guide adhesive selection for rotor magnetics retention in the second and third generation machines. The current status of the machines and any outcomes from testing that has been conducted thus far, particularly with respect to performance, is presented at the end. / Thesis / Master of Applied Science (MASc)
19

Design and Analysis of Modular Axial Flux Switched Reluctance Motor

Shiwakoti, Rochak 05 August 2019 (has links)
This thesis presents a new modular structure of the axial flux Switched Reluctance Motor (SRM). The design consists of four stator disks with each adjacent disk rotated 30 degrees apart and four rotor disks connected to a common shaft. The proposed design aims to reduce the unwanted radial force, mitigate the torque ripple, and improve the efficiency. The modular structure distributes the radial force and torque strokes along the axial length of the motor, potentially damping the torque pulsation. In addition, the modular structure would deliver the rating power at a lower current level, reducing the overall ohmic loss. Moreover, if a fault occurs on a motor disk or its control unit, the motor would still operate through other disks, increasing the reliability of the system. To verify the effectiveness of the proposed design, the magneto-static and transient performance of the motor are compared with the conventional single layer structure using 3-D Finite-Element (FE) software tool to see that the proposed motor performs better with lower torque ripple and lower radial force than a conventional single layer structure.
20

Comparison Of Axial Flux And Radial Flux Brushless Dc Motor Topologies For Control Moment Gyroscope Wheel Applications

Yilmaz, Kurtulus 01 May 2009 (has links) (PDF)
In this thesis axial flux and radial flux brushless dc motors will be studied as a drive motor for the control of moment gyroscope wheel. Design equations for axial flux and radial flux brushless dc motor topologies will be reviewed. Based on these equations radial and axial flux motors with different number of poles will be designed that meet control moment gyroscope wheel application requirements. The results will be evaluated in terms of efficiency, torque/mass and torque/volume, and suitability for the control moment gyroscope application.

Page generated in 0.0838 seconds