• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Um background na teoria dos conjuntos / One background in set theory

Aguiar, Francisco Fagner Portela January 2015 (has links)
AGUIAR, Francisco Fagner Portela. Um background na teoria dos conjuntos. 2015. 50 f. Dissertação (Mestrado em Matemática em Rede Nacional) – Centro de Ciências, Universidade Federal do Ceará, Fortaleza, 2015. / Submitted by Erivan Almeida (eneiro@bol.com.br) on 2015-11-13T15:41:09Z No. of bitstreams: 1 2015_dis_ffpaguiar.pdf: 1566390 bytes, checksum: 114ad96172cfa622234e88e05d73ffff (MD5) / Approved for entry into archive by Rocilda Sales(rocilda@ufc.br) on 2015-11-18T13:38:59Z (GMT) No. of bitstreams: 1 2015_dis_ffpaguiar.pdf: 1566390 bytes, checksum: 114ad96172cfa622234e88e05d73ffff (MD5) / Made available in DSpace on 2015-11-18T13:38:59Z (GMT). No. of bitstreams: 1 2015_dis_ffpaguiar.pdf: 1566390 bytes, checksum: 114ad96172cfa622234e88e05d73ffff (MD5) Previous issue date: 2015 / The set theory sometimes left out in some high schools, is in a key element for understanding the functions in particular. Failure to address this issue or its superficial approach leaves the student a difficult gap to be filled in later studies. Incidentally, the left gap may hinder student performance in higher education. If this is so, is the main objective of this work to a reinterpretation of the main topics linked to the high school set theory, while making a bridge between these and other equally important points dealing with sets in a more academic language. Will be covered from the properties and theorems related to finite sets up its generalization to infinite sets, culminating in the Cantor-Schroeder-Bernstein theorem, the Axiom of Choice and Zorn’s Lemma. To this end, there were literature searches in various sources. / A teoria de conjuntos por vezes deixada de lado em algumas escolas de ensino médio, constitui-se em um elemento primordial para o entendimento das funções, em especial. A não abordagem, ou a sua abordagem superficial, deixa no estudante uma lacuna difícil de ser suprida em estudos posteriores. Aliás, a lacuna deixada pode dificultar o desempenho do estudante no ensino superior. Diante desta constatação, é objetivo principal desta dissertação fazer uma leitura dos principais tópicos ligados à Teoria de Conjuntos do ensino médio, ao mesmo tempo em que faz uma ponte entre estes e outros pontos não menos importantes, tratando conjuntos em uma linguagem mais acadêmica. Serão abordados desde as propriedades e teoremas relacionados a conjuntos finitos, até a sua generalização para conjuntos infinitos, culminando com o teorema de Cantor-Schroeder-Bernstein, o Axioma da Escolha, e o Lema de Zorn. Para tantos, realizaram-se pesquisas bibliográficas em fontes variadas.
2

Ordens densas, participações e o axioma da escolha

Gonzalez, Carlos Gustavo, 1953- 25 March 1994 (has links)
Orientador : Luiz Paulo de Alcantara / Tese (doutorado) - Universidade Estadual de Campinas, Instituto de Filosofia e Ciencias Humanas / Made available in DSpace on 2018-07-19T01:03:40Z (GMT). No. of bitstreams: 1 Gonzalez_CarlosGustavo_D.pdf: 1718213 bytes, checksum: bf9cc685d8b4e892bab370b4ddb18d01 (MD5) Previous issue date: 1994 / Resumo: Não informado / Abstract: Not informed. / Doutorado / Doutor em Filosofia
3

Principais Axiomas da Matemática

Santos, Magnun César Nascimento dos 27 August 2014 (has links)
Submitted by Viviane Lima da Cunha (viviane@biblioteca.ufpb.br) on 2015-10-19T12:44:14Z No. of bitstreams: 1 arquivototal.pdf: 685310 bytes, checksum: c2f1ca276071e748c54644c3a47977f8 (MD5) / Approved for entry into archive by Maria Suzana Diniz (msuzanad@hotmail.com) on 2015-10-19T12:44:52Z (GMT) No. of bitstreams: 1 arquivototal.pdf: 685310 bytes, checksum: c2f1ca276071e748c54644c3a47977f8 (MD5) / Made available in DSpace on 2015-10-19T12:44:52Z (GMT). No. of bitstreams: 1 arquivototal.pdf: 685310 bytes, checksum: c2f1ca276071e748c54644c3a47977f8 (MD5) Previous issue date: 2014-08-27 / Coordenação de Aperfeiçoamento de Pessoal de Nível Superior - CAPES / The main objective of this work is showing the importance of systems axiomatic in mathematics. We will study some classic axioms, their equivalence and we will see some applications of them. / Este trabalho tem como objetivo fazer uma abordagem sobre a importância de sistemas axiomáticos na Matemática. Estudaremos alguns axiomas clássicos, suas equivalências e veremos algumas aplicações dos mesmos.

Page generated in 0.0485 seconds