• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 38
  • 5
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • Tagged with
  • 58
  • 58
  • 7
  • 7
  • 7
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Characterization of moving neurofilaments in cultured neurons

Yan, Yanping, January 2005 (has links)
Thesis (Ph. D.)--Ohio State University, 2005. / Title from first page of PDF file. Includes bibliographical references (p. 196-235).
22

Identifying and Characterizing Novel Mechanisms in the Establishment and Maintenance of Synapses in Drosophila

Spinner, Michael 06 September 2018 (has links)
Synapse development is a stepwise process that requires the recruitment of key synaptic components to active zones, followed by continual maintenance of these structures to maintain connectivity and stability throughout the life of the organisms. Early synapse development requires the recruitment of early scaffolding proteins to establish stable connectivity as well as provide sites of recruitment of other vital synaptic proteins. One of the earliest proteins to be localized to the synapse is the conserved protein Syd-1. Syd-1 proteins contain a Rho GTPase activating protein (GAP)-like domain of unclear significance. Here I show that Drosophila Syd-1 interacts with all six fly Rhos and has GAP activity towards RAC1. I then show that lacks GAP activity localizes normally to presynaptic sites and is sufficient to recruit Nrx-1 but fails to cluster Brp normally and genetically interacts with RAC1 in vivo. I conclude that contrary to previous models, the GAP domain of fly Syd-1 is active and required for presynaptic development. Additionally, I’ve identified a previously uncharacterized protein, Vezl, as being critical for retrograde axonal transport and synaptic maintenance. I found that Vezl required for normal neuronal growth and that vezl loss resulted in decreased neuron size and the formation of swollen neuronal terminals that accumulated membrane markers and axonal transport cargo. I found that vezl mutants specifically retrograde transport of cargo and particularly affected signaling endosomes. The signaling endosomes were unable to initiate retrograde transport in vezl mutants and remained stuck within the distal boutons unable to relay their signaling peptides back to the nucleus. I conclude that Vezl is serving a role in attaching retrograde cargo to dynein and the microtubules specifically at neuron tips so that they can undergo retrograde axonal transport. This dissertation includes previously published and unpublished co-authored material. / 2020-09-06
23

Der Einfluss von humanem α-Synuclein-Wildtyp und der Mutanten A30P und A53T auf die Autophagie und den Transport synaptischer Vesikel in primären Mittelhirnneuronen der Ratte / The influence of human α-Synuclein-wildtype and its mutants A30P and A53T on autophagy and transport of synaptic vesicles in rat primary midbrain neurons

Bitow, Florian 07 October 2020 (has links)
No description available.
24

Altered Transport Velocity of Axonal Mitochondria in Retinal Ganglion Cells After Laser-Induced Axonal Injury In Vitro / レーザーによる軸索障害後の網膜神経節細胞のミトコンドリアの軸索内輸送速度の変化

Yokota, Satoshi 23 March 2017 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(医学) / 甲第20244号 / 医博第4203号 / 新制||医||1020(附属図書館) / 京都大学大学院医学研究科医学専攻 / (主査)教授 髙橋 良輔, 教授 伊佐 正, 教授 井上 治久 / 学位規則第4条第1項該当 / Doctor of Medical Science / Kyoto University / DFAM
25

Temporal changes in the ability of degenerating pathways to be penetrated by regenerating axons in the goldfish

Paré, Michel, 1958- January 1983 (has links)
No description available.
26

Studies of early neural regeneration in the visual system of the goldfish

Lowenger, Elizabeth. January 1986 (has links)
No description available.
27

Investigating mechanisms of oxidative-stress induced BDNF axonal transport deficits in basal forebrain cholinergic neurons

Gage, Claire January 2023 (has links)
Aging and Alzheimer’s disease (AD) are associated with decreased cognitive function and neural degeneration. The basal forebrain is one of the first areas of the brain to degenerate in AD and depends on the neurotrophin brain-derived neurotrophic factor (BDNF) for survival. Loss of BDNF transport from target neurons may contribute to basal forebrain cholinergic neuron (BFCN) vulnerability in AD and aging. Oxidative stress is associated with cholinergic dysfunction and cognitive decline in aging and AD, and it is possible that oxidative stress may contribute to BDNF transport deficits in BFCNs. BFCNs are grown in microfluidic chambers that allow isolation of BFCN soma and axon terminals so transport of biotinylated and fluorescently labelled BDNF can be quantified. The objective of my research was to determine if oxidative stress induces BDNF retrograde transport deficits in BFCNs, and the mechanism behind this effect. I found that oxidative stress does reduce BDNF retrograde transport in BFCNs. Because it has previously been shown that aged BFCNs have decreased BDNF transport and downregulate the BDNF receptor TrkB, expression of both TrkB and p75NTR receptors was tested following oxidative stress using immunocytochemistry (ICC) and western blotting. This experiment showed that oxidative stress does not affect p75NTR or TrkB receptor levels. A likely alternative is that oxidative stress may lead to alterations in the transport machinery responsible for retrograde BDNF transport. I hypothesized that oxidative stress decreases retrograde axonal transport of BDNF via increased insulin-like growth factor 1 receptor (IGF1R) activity, which decreases the protein expression of the adaptor proteins BICD1 and Hook1 by inhibiting GSK3β activity via the PI3K-Akt pathway. ICC and western blotting showed that oxidative stress has no effect on either BICD1 or Hook1 levels. Future directions of this work involve further studying the involvement of the IGF1R pathway in oxidative stress, and the effect on other proteins involved in BDNF transport, including htt and DISC1. / Thesis / Master of Science (MSc)
28

Differential Loss of Bidirectional Axonal Transport with Structural Persistence Within The Same Optic Projection of the DBA/2J Glaucomatous Mouse

Smith, Matthew Alan 02 June 2014 (has links)
No description available.
29

The Role of Myosin Va and the Dynein/Dynactin Complex in Neurofilament Axonal Transport

Alami, Nael H. January 2009 (has links)
No description available.
30

Étude de la toxicité neuronale induite par la protéine Tau dans la maladie d’Alzheimer, sur un modèle Invertébré : Drosophila melanogaster / Toward understanding the mechanisms of Tau induced neurotoxicity in Alzheimer disease using Drosophila melanogaster model

Talmat-Amar, Yasmina 26 March 2012 (has links)
La protéine Tau est une protéine associée aux microtubules, localisée principalement dans les axones. Elle joue un rôle important dans la polymérisation et la stabilisation des microtubules, in vitro. Sa fixation aux microtubules est régulée par de nombreuses kinases et phosphatases. En effet, lorsque Tau est phosphorylée, elle se détache des MTs. Inversement, elle se fixe aux MTs lorsqu’elle est déphosphorylée. Le dysfonctionnement de la protéine Tau est à l’origine de différentes maladies neurodégénératives appelées Tauopathies comme la maladie d’Alzheimer. Dans ce contexte pathologique, Tau est anormalement phosphorylée et s’accumule sous forme de structures neurofibrillaires appelées PFH (paires de filaments hélicoïdaux). Ces structures sont retrouvées dans les neurones en dégénérescence et constituent une des caractéristiques majeures de lésion histopathologique de la MA. Dans le cadre de cette maladie, deux principaux mécanismes de toxicité neuronale induite par la protéine Tau ont été suggérés. La première hypothèse considère que l’hyperphosphorylation de Tau provoque son détachement des microtubules induisant ainsi une déstabilisation du cytosquelette microtubulaire, une altération du transport axonal et une mort neuronale. Selon la seconde hypothèse, la fixation excessive de Tau aux microtubules altèrerait le transport axonal des vésicules et autres organites nécessaires au bon fonctionnement de la synapse. Dans ce cas, l’hyperphosphorylation de Tau et la formation des structures PFH auraient en premier lieu un effet protecteur pour la cellule. Lors de ce travail de thèse, nous avons confronté ces deux théories en utilisant le modèle invertébré : Drosophila melanogaster. Tout d’abord, nous avons étudié l’effet de la perte de fonction de la protéine Tau de drosophile (dTau) sur l’architecture du cytosquelette microtubulaire et sur le transport axonal des neuropeptides. Ce travail nous a permis d’une part, de tester l’hypothèse de l’effet du détachement de la protéine Tau des MTs sur le transport axonal, et d’autre part d’étudier la fonction endogène de la protéine dTau. En effet, le rôle in vivo de la protéine Tau endogène sur la morphologie et la physiologie axonale reste inconnu à ce jour, et ceci probablement dû à une redondance fonctionnelle avec les autres protéines associées aux microtubules (MAPs). Dans cette présente étude nous utilisons le modèle Drosophila melanogaster qui présente l’avantage de n’avoir qu’un seul homologue de la famille Tau/MAP2/MAP4 des mammifères. Nos données montrent pour la première fois, in vivo, que la protéine Tau contrôle la densité des microtubules axonaux, et que la perte de la protéine Tau altère le transport axonal microtubule-dépendant. Cependant, les défauts observés ne semblent pas être suffisant pour induire une neurodégénérescence, mais pourraient néanmoins constituer un défaut apparaissant précocement chez les individus atteints. Dans la seconde partie de cette thèse, nous avons étudié l’hypothèse centrée sur l’effet de la fixation excessive de la protéine Tau humaine aux microtubules. Pour cela, nous avons utilisé des drosophiles transgéniques exprimant différentes isoformes mutées de Tau humain (hTau) mimant différents états de phosphorylation de la protéine Tau et s’attachant différemment aux microtubules. Nos résultats montrent clairement que la fixation de Tau en excès sur les microtubules induit des défauts majeurs du transport axonal et de la libération des neuropeptides. Nous démontrons ainsi que l’un des mécanismes possible de la maladie d’Alzheimer est la fixation précoce excessive de Tau sur les microtubules. Par ailleurs, nos résultats mettent en évidence une limite sérieuse des thérapies visant à inhiber la phophorylation de Tau dans la MA. / Tau is a microtubule associated protein that belongs to the MAP structural family. it polymerizes and stabilizes microtubules, in vitro. Tau is found in high amount in axons. The microtubule binding capacity of Tau is regulated by kinases and phophatases. Indeed, when Tau is phosphorylated it desengages from microtubules and when it is dephosphorylated it binds to microtubules and stabilizes them. Tau is involved in several neurodegenerative disorders called tauopathies like the elderly neuropathy, Alzheimer disease (AD). In this neurodegenerative disorder, Tau is abnormally phosphorylated and aggregates to forme neurofibrillary tangles called paired helicoidal filament (PHF), witch is one of the hallmark of AD. Hence, two major hypothesis explaining neurodegeneration in this condition have been suggested. The first hypothesis considers that because of Tau hyperphosphorylation, it detaches from microtubules and starts to form aggregates. Tau detachment from microtubules leads to their destabilization and subsequent defects in axonal transport. These defects in axonal transport lead to synaptic dysfonction and neuronal degeneration. The second hypothesis suggests that an excess of Tau binds onto microtubules, induces axonal transport defects and subsequently neuronal loss. The hyperphosphorylation of Tau and PHF formation would represent a protective response of the cell to prevent axonal defects and neurodegeneresence. The aim of our work is to evaluate these two mechanisms using Drosophila melanogaster model. First, we studied the effect of drosophila Tau (dTau) loss of function on microtubule organisation and axonal transport of neuropeptide in vivo. This work allows us to study the first hypothesis of detachment of Tau from microtubules an its consequences, as well as understanding the endogenous function of dTau. Infact, we took the advantage of drosophila lower genetic redundancy in witch dTau is the only homologue of the mamalian Tau/MAP2/MAP family. Our results demontrated that dTau control axonal microtubule number and that the loss of Tau function affects vesicular axonal transport. However, these defects do not seem to be toxic for the neuron but represent an early event that may progressively become toxic. In the second part of this work we evaluated the second hypothesis. It consists of studying the consequences of an excess of hypophosphorylated Tau bound to microtubules on axonal transport. Our results demontrate for the first time a stronger toxicity of hypophosphorylated Tau for neuronal function compared to pseudophosphoryated Tau. These data demonstrate an important mechanism that could probably be implicated in AD. In addition, our work point out a potentiel limit of a current therapeutic strategy aimed at inhibiting Tau phosphorylation.

Page generated in 0.0887 seconds