Spelling suggestions: "subject:"axonal transport."" "subject:"oxonal transport.""
51 |
Efeitos do exercício físico moderado sobre o tráfego de neurotrofinas e seus receptores no sistema nervoso central de ratos idosos / Effects of moderate physical exercise upon intracellular trafficking of neurotrophins and their receptors in the central nervous system of aged ratsAlmeida, Michael Fernandes de 16 September 2015 (has links)
O exercício físico pode atenuar os efeitos do envelhecimento sobre o sistema nervoso central, por meio do aumento da expressão de neurotrofinas, tais como fator neurotrófico derivado do cérebro (BDNF), o qual promove a ramificação dendrítica e melhora da maquinaria sináptica, pela interação com seu receptor TrkB. Receptores TrkB são produzidos no corpo da célula e transportados aos terminais axonais, por meio de SLP1, CRMP2, Rab27B e Sortilina onde são ancorados para realizar seu papel fisiológico. Sabendo que a relação entre o tráfego de receptores de neurotrofinas e o treinamento físico ainda é pouco conhecida, o objetivo do presente trabalho é analisar os níveis do receptor TrkB, bem como de seus transportadores anterógrados e retrógrados, no sistema nervoso central de ratos idosos, modelos de neurodegeneração, expostos a diferentes protocolos de treinamento físico moderado. Os ratos do primeiro grupo experimental foram expostos a 1mg/kg/dia de Rotenona ou DMSO durante 4 semanas, depois, juntamente com a exposição à rotenona, realizaram treinamento físico moderado em esteira, 5 vezes por semana, durante 40 minutos; ou permaneceram em repouso. Os ratos do segundo grupo experimental realizaram 6 semanas de treinamento, sendo em seguida expostos à rotenona por 4 semanas, e subdividos em dois grupos, um que continuou o exercício e outro que ficou sedentário. Os resultados encontrados sugerem que o treinamento físico parece reverter ou prevenir de maneira geral os danos presentes na neurodegeneração considerando as proteínas do tráfego de BDNF e seu receptor, e ainda, que a magnitude e direção destas alterações está diretamente relacionada ao protocolo de treinamento físico, bem como, a região do sistema nervoso central analisada / Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals, through SLP1, CRMP2, Sortilin and Rab27B, to where receptors are anchored to perform its physiological role. However, the aspects of the neurotrophin receptors traffic after physical training is still a matter of investigation. Thus, the present study aims to analyze the expression levels of TrkB receptor and their anterograde carriers in aged Lewis rats, model of neurodegeneration, and its relationship with moderate exercise training. Rats from the first experimental group were exposed to 1mg/kg/day of Rotenone (ROT) or DMSO for 4 weeks, and then subjected or not to moderate exercise running on treadmill, five days a week, 40 minutes a day, combined with the drug. Rats from the second experimental group were trained for 6 weeks, followed by exposure to rotenone during 4 weeks, rats were then subdivided into two groups, one that continued the exercise and the other became sedentary. Results suggest that exercise training appears to reverse or prevent the impairment related to neurodegeneration considering the proteins involved in BDNF signaling, and also that the magnitude and direction of these changes in directly related to the physical training protocol, as well as the area of the central nervous system analyzed
|
52 |
Dynactin1 mutations associated with amyotrophic lateral sclerosis and their effect on axonal transport and neuromuscular junction formation / Dynactin1 mutations associées à la sclérose latérale amyotrophique et leur effet sur le transport axonal et la formation de jonction neuromusculaireBercier, Valérie 18 September 2017 (has links)
La sclérose latérale amyotrophique (SLA) est une pathologie neurodégénerative progressive se déclarant vers 50-60 ans. Elle est majoritairement de nature sporadique son incidence est estimée à 1 :1000. La SLA mène à une paralysie progressive et entraine généralement à la mort des patients de 2 à 5 ans suivant le diagnostic aux suite d’une fonte musculaire importante liée à la perte des neurones moteurs. Au cours des années, plusieurs mutations ont été identifiées autant chez les patients atteints de SLA sporadique que de SLA familiale. Ces mutations interfèrent avec la fonction de gènes variés, tels que DCTN1, codant pour la protéine dynactine1, sous-unité du complexe multimoléculaire dynactine. Ce complexe sert d’adaptateur au moteur moléculaire dynéine, chargé du transport axonal rétrograde, où sa fonction permettrait de régir l’activité du complexe moteur et sa capacité à lier divers cargos. Nous avons donc entrepris la caractérisation d’une lignée de poissons zèbre mutants pour dynactin1a (nommés mikre okom632, mokm632), plus particulière en terme du développement d’un type de neurone moteur primaire (les CaPs), afin de déterminer l’effet de la perte de fonction de ce gène sur l’axonogenèse, la formation et la stabilisation de la jonction neuromusculaire, sur le comportement de l’embryon, ainsi que sur le transport axonal.Nous suggérons que dynactin1 favorise la stabilité synaptique, où une perte de fonction de ce gène entraine des défauts de croissance, des anomalies éléctrophysiologiques et un comportement anormal. Ce rôle semble être indépendant des fonctions connues de régulateur du moteur dynéine. / Amyotrophic lateral sclerosis (ALS) is an adult-onset neurodegenerative disease, which is mainly sporadic in nature. This progressive pathology has an estimated incidence of 1:1000 and generally leads to death within 2-5 years of diagnosis due to muscle wasting and severe motor neuron loss. Over the last years, mutations have been identified in both sporadic and familial ALS patients, interfering with the function of many genes, including DCTN1, which encodes for a subunit of the motor protein complex subunit dynactin. The dynactin complex serves as an adaptor for the dynein motor complex, responsible for retrograde axonal transport, and it is believed to regulate dynein activity and the binding capacity for cargos. We set out to characterize a mutant zebrafish line for dynactn1a (named mikre okom632, mokm632), looking specifically at caudal primary motor neurons (CaPs), with regard to axonal development, formation and stability of the neuromuscular junction (NMJ) and the behavioral phenotype produced in embryos, as well as axonal transport metrics. We suggest a role for dynactin1 in synapse stability, where the loss-of-function of this gene leads to growth defects, electrophysiological abnormalities and behavioral deficits. This role appears to be independent of its known function as a regulator of dynein, its implication in axonal transport, or its regulation of microtubule dynamics. With this study, we hope to elucidate key molecular mechanisms in ALS etiology by revealing the role of dynactin1 in NMJ development and maintenance.
|
53 |
Efeitos do exercício físico moderado sobre o tráfego de neurotrofinas e seus receptores no sistema nervoso central de ratos idosos / Effects of moderate physical exercise upon intracellular trafficking of neurotrophins and their receptors in the central nervous system of aged ratsMichael Fernandes de Almeida 16 September 2015 (has links)
O exercício físico pode atenuar os efeitos do envelhecimento sobre o sistema nervoso central, por meio do aumento da expressão de neurotrofinas, tais como fator neurotrófico derivado do cérebro (BDNF), o qual promove a ramificação dendrítica e melhora da maquinaria sináptica, pela interação com seu receptor TrkB. Receptores TrkB são produzidos no corpo da célula e transportados aos terminais axonais, por meio de SLP1, CRMP2, Rab27B e Sortilina onde são ancorados para realizar seu papel fisiológico. Sabendo que a relação entre o tráfego de receptores de neurotrofinas e o treinamento físico ainda é pouco conhecida, o objetivo do presente trabalho é analisar os níveis do receptor TrkB, bem como de seus transportadores anterógrados e retrógrados, no sistema nervoso central de ratos idosos, modelos de neurodegeneração, expostos a diferentes protocolos de treinamento físico moderado. Os ratos do primeiro grupo experimental foram expostos a 1mg/kg/dia de Rotenona ou DMSO durante 4 semanas, depois, juntamente com a exposição à rotenona, realizaram treinamento físico moderado em esteira, 5 vezes por semana, durante 40 minutos; ou permaneceram em repouso. Os ratos do segundo grupo experimental realizaram 6 semanas de treinamento, sendo em seguida expostos à rotenona por 4 semanas, e subdividos em dois grupos, um que continuou o exercício e outro que ficou sedentário. Os resultados encontrados sugerem que o treinamento físico parece reverter ou prevenir de maneira geral os danos presentes na neurodegeneração considerando as proteínas do tráfego de BDNF e seu receptor, e ainda, que a magnitude e direção destas alterações está diretamente relacionada ao protocolo de treinamento físico, bem como, a região do sistema nervoso central analisada / Physical exercise can attenuate the effects of aging on the central nervous system by increasing the expression of neurotrophins such as brain-derived neurotrophic factor (BDNF), which promotes dendritic branching and enhances synaptic machinery, through interaction with its receptor TrkB. TrkB receptors are synthesized in the cell body and are transported to the axonal terminals, through SLP1, CRMP2, Sortilin and Rab27B, to where receptors are anchored to perform its physiological role. However, the aspects of the neurotrophin receptors traffic after physical training is still a matter of investigation. Thus, the present study aims to analyze the expression levels of TrkB receptor and their anterograde carriers in aged Lewis rats, model of neurodegeneration, and its relationship with moderate exercise training. Rats from the first experimental group were exposed to 1mg/kg/day of Rotenone (ROT) or DMSO for 4 weeks, and then subjected or not to moderate exercise running on treadmill, five days a week, 40 minutes a day, combined with the drug. Rats from the second experimental group were trained for 6 weeks, followed by exposure to rotenone during 4 weeks, rats were then subdivided into two groups, one that continued the exercise and the other became sedentary. Results suggest that exercise training appears to reverse or prevent the impairment related to neurodegeneration considering the proteins involved in BDNF signaling, and also that the magnitude and direction of these changes in directly related to the physical training protocol, as well as the area of the central nervous system analyzed
|
54 |
Mechanisms of Axonal Transport Defects in ALSSeifert, Anne 21 May 2021 (has links)
Neurodegenerative diseases have become one of the most common causes of death worldwide over the last couple of decades, with increasing tendency. Amyotrophic lateral sclerosis (ALS) is the most common neurodegenerative disease affecting specifically spinal (lower) and cortical (upper) motor neurons in the spinal cord and brainstem, respectively. It is usually a late onset disorder (average age of onset in Germany is 61 years) and leads to death within 2-5 years after symptoms onset due to respiratory failure. To date, there is no cure for ALS and only two drugs have been approved for its treatment, which prolong the lifespan for up to six months or slow down disease progression in a subpopulation of patients. About 90 % of ALS cases are sporadic, while about 10 % are familial and hence caused by mutations in specific genes, among them fused in sarcoma (FUS), a DNA- and RNA-binding protein. Mutations in FUS account for roughly 5 % of familial cases and occur predominantly in its nuclear localization sequence (NLS), such as the FUS-P525L mutation. Neurons expressing this variant display a strong cytoplasmic mislocalization of FUS and hence a loss of its nuclear function. Among other pathological events, defects in axonal transport along microtubules have been observed early in disease progression in several models of FUS-ALS, indicating its role as a major hallmark of the disease. However, the mechanism of how transport is impaired within these neurons remains unknown to date. This study aimed at investigating two possible mechanisms how the FUS-P525L mutant variant affects microtubule-based axonal transport. First, it was analyzed whether FUS directly interacts with microtubules or motors and if the mislocalized, mutant variant alters this interaction. Secondly, cytoplasmic mislocalized FUS-P525L can no longer fulfil its regular role in the splicing of pre-mRNAs, among them the mRNA coding for the microtubule-associated protein tau. This reportedly leads to an increased ratio of translated tau isoforms containing four microtubule binding repeats (4R) to those containing three repeats (3R). 4R tau isoforms are known to have a stronger binding affinity towards microtubules and may hence impair transport more severely by acting as a roadblock for motor proteins. Towards this end, this study investigated whether an increase in 4R:3R tau isoform ratio is sufficient to impair microtubule based transport. Axonal transport was reconstituted in vitro using a kinesin-1-dependent microtubule gliding assays, in which microtubules are propelled by surface-immobilized kinesin-1 motors. The assay was modified and optimized to operate sensitively and robust in the presence of complex solutions such as whole cell lysates and the microtubule gliding velocity analyzed as a measure for motility of the underlying motors. To determine the direct interaction of FUS variants with kinesin-1 or microtubules, recombinant human wildtype FUS-GFP and FUS-P525L-GFP was added to the assay. In addition, ALS patient-specific induced pluripotent stem cells (iPSCs) expressing the same FUS variants were differentiated towards spinal motor neurons and their cell lysates applied to this assay in order to determine whether FUS variants need endogenous adaptors or interaction partners to interfere with kinesin-1 motility on microtubules. Further, to investigate the interference of tau isoforms with kinesin-1 motility, recombinant human 2N3R tau-GFP and 2N4R tau-mScarlet was purified from insect cells and added to the modified kinesin-1-dependent microtubule gliding assay, either individually or combined at different ratios. In addition, the binding of these tau variants to microtubules was assessed. The kinesin-1-dependent microtubule gliding assays was modified to operate sensitively and robustly in the presence of β-glycerophosphate (to inhibit endogenous phosphatases in whole cell lysates), and methylcellulose (to prevent microtubule detachment from kinesin-1 motors due to presence of β-glycerophosphate). Under these conditions, neither recombinant human FUS-GFP nor endogenous FUS-GFP variants in lysates of spinal motor neurons bound to microtubules or interfered with kinesin-1 motility. In contrast, both tau isoforms used in the present study bound to microtubules and impaired kinesin-1 motility, while 2N4R tau-mScarlet was a much more potent inhibitor of microtubule gliding and displayed a 20-fold stronger binding affinity to microtubules compared to 2N3R tau-GFP. Interestingly, increasing ratios of 4R:3R tau isoforms impaired kinesin-1-dependent microtubule gliding. In addition, the presence of 2N4R tau-mScarlet strongly prevented 2N3R tau-GFP from binding to microtubules. This study provides evidence that neither wildtype FUS nor the FUS-P525L variant directly interfere with axonal transport by interacting with kinesin-1 motors or microtubules. Further, the present data suggests that neither FUS variant impedes kinesin-1 motility on microtubules by interacting with endogenous adaptor proteins present in cell lysates of iPSC-derived spinal motor neurons. Therefore, it is proposed that axonal transport defects are not directly caused by interaction of cytoplasmic mislocalized FUS with the motors or microtubules, but rather arise as a consequence of other pathological events triggered by mutant FUS variants. In particular, this study demonstrates that an increased ratio of 4R:3R tau isoforms is sufficient to impair kinesin-1 motility on microtubules due to increased decoration of microtubules with 4R tau isoforms, preventing 3R tau isoforms from binding to microtubules. This strongly suggests that an increased ratio of 4R:3R tau isoforms, since FUS no longer regulates splicing of tau pre-mRNA upon its cytoplasmic mislocalization, may be sufficient to cause or contribute to the axonal transport defects observed early in FUS-ALS pathology. / Neurodegenerative Erkrankungen sind in den letzten Jahrzehnten mit zunehmender Tendenz zu einer der häufigsten Todesursachen weltweit geworden. Amyotrophe Lateralsklerose (ALS) ist die häufigste neurodegenerative Erkrankung, die spezifisch spinale (untere) und kortikale (obere) Motoneuronen im Rückenmark bzw. im Hirnstamm betrifft. Es handelt sich in der Regel um eine spät einsetzende Krankheit (das mittlere Erkrankungsalter in Deutschland beträgt 61 Jahre) und führt innerhalb von 2-5 Jahren nach Auftreten der Symptome zum Tod aufgrund von Atemversagen. Bisher gibt es keine Heilung für ALS und es wurden nur zwei Medikamente für die Behandlung zugelassen, die die Lebensdauer um bis zu sechs Monate verlängern oder das Fortschreiten der Krankheit bei einer Subpopulation von Patienten verlangsamen. Ungefähr 90% der ALS-Fälle sind sporadisch, während ungefähr 10% familiär sind und daher durch Mutationen in bestimmten Genen verursacht werden, darunter fused in sarcoma (FUS), einem DNA- und RNA-bindenden Protein. Mutationen in FUS machen etwa 5% der familiären Fälle aus und treten überwiegend in der Kernlokalisierungssequenz (NLS) auf, wie beispielsweise die FUS-P525L Mutation. Neuronen, die diese Mutante exprimieren, zeigen eine starke zytoplasmatische Fehllokalisierung von FUS und damit einen Verlust seiner Funktionen im Zellkern. Neben anderen pathologischen Ereignissen wurden in mehreren FUS-ALS Modellsystemen Defekte im Mikrotubuli-basierenden axonalen Transport früh im Krankheitsverlauf beobachtet, was auf seine Rolle als eines der Hauptmerkmale dieser Krankheit hindeutet. Der Mechanismus, wie der Transport innerhalb dieser Neuronen beeinträchtigt wird, ist jedoch bis heute unbekannt. Ziel dieser Studie ist es, zwei mögliche Mechanismen zu untersuchen, wie das mutierte FUS-P525L Protein den axonalen Transport entlang von Mikrotubuli beeinflusst. Zunächst wurde analysiert, ob FUS direkt mit Mikrotubuli oder Motorproteinen interagiert und ob zytoplasmatische fehllokalisierte FUS-P525L Protein diese Interaktion verändert. Ferner kann zytoplasmatische fehllokalisiertes FUS-P525L seine reguläre Rolle beim Spleißen von Prä-mRNAs nicht mehr erfüllen, darunter die mRNA, die für das mit Mikrotubuli-assoziierte Protein Tau kodiert. Dies führt zu einem erhöhten Verhältnis von translatierten Tau-Isoformen, die vier Mikrotubuli-Bindestellen (4R) enthalten, zu solchen mit drei Bindestellen (3R). Es ist bekannt, dass 4R-Tau-Isoformen eine stärkere Bindungsaffinität zu Mikrotubuli im Vergleich zu 3R-Tau-Isoformen aufweisen und daher den Transport stärker beeinträchtigen können, indem sie als Hindernis für Motorproteine agieren. In dieser Studie wurde daher untersucht, ob eine Erhöhung des Verhältnisses von 4R:3R-Tau-Isoform ausreicht, um den Mikrotubuli-basierenden Transport zu beeinträchtigen. Der axonale Transport wurde in vitro unter Verwendung eines Kinesin-1-gestuerten Mikrotubuli Motilitätsassay rekonstruiert, bei welchem Mikrotubuli von darunterliegenden oberflächenimmobilisierte Kinesin-1 Motorproteinen transportiert werden, also über die Oberfläche gleiten. Der Assay wurde modifiziert und optimiert, um in Gegenwart komplexer Lösungen wie Ganzzelllysaten sensitiv und robust zu funktionieren, und die Gleitgeschwindigkeit der Mikrotubuli wurde als Maß für die Motilität der darunterliegenden Motoren analysiert. Um die direkte Wechselwirkung von FUS-Varianten mit Kinesin-1 Motorproteinen oder Mikrotubuli zu bestimmen, wurde dem Assay rekombinantes menschliches Wildtyp-FUS-GFP und FUS-P525L-GFP hinzugegeben. Zusätzlich wurden ALS-patientenspezifische, induzierte pluripotente Stammzellen (iPSCs), welche dieselben FUS-Varianten exprimieren, zu spinalen Motoneuronen differenziert und ihre Zelllysate in diesem Assay angewendet, um zu bestimmen, ob FUS-Varianten endogene Adapter oder Interaktionspartner für die Interaction mit Kinesin-1 oder Mikrotubuli benötigen. Um den Einfluss von Tau-Isoformen auf die Kinesin-1 Motilität zu untersuchen, wurde rekombinantes menschliches 2N3R Tau-GFP und 2N4R Tau-mScarlet aus Insektenzellen aufgereinigt und dem modifizierten Kinesin-1-gesteuerten Mikrotubuli Motilitätsassay entweder einzeln oder in unterschiedlichen Verhältnissen kombiniert hinzugegeben. Zusätzlich wurde die Bindung dieser Tau-Varianten an Mikrotubuli analysiert. Der Kinesin-1-gesteuerte Mikrotubuli Motilitätsassay wurden so modifiziert, dass er in Gegenwart von β-Glycerophosphat (zur Hemmung endogener Phosphatasen in Ganzzelllysaten) und Methylcellulose (zur Verhinderung der Ablösung von Mikrotubuli von Kinesin-1 Motoren aufgrund von β-Glycerophosphat) empfindlich und robust funktioniert. Unter diesen Bedingungen zeigten weder rekombinantes menschliches FUS-GFP noch endogene FUS-GFP-Varianten in Lysaten von spinalen Motoneuronen eine Wechselwirkung mit Mikrotubuli und beeinträchtigten auch nicht die Kinesin-1 Motilität. Im Gegensatz dazu banden beide in der vorliegenden Studie verwendeten Tau-Isoformen an Mikrotubuli und beeinträchtigten die Kinesin-1-Motilität, wobei 2N4R Tau-mScarlet das Gleiten von Mikrotubuli viel stärkerer beeinträchtigte und eine 20-fach stärkere Bindungsaffinität zu Mikrotubuli im Vergleich zu 2N3R Tau-GFP zeigte. Ferner beeinträchtigten steigende Verhältnisse von 4R:3R Tau-Isoformen über Kinesin-1 gleitende Mikrotubuli, während die Präsenz von 2N4R Tau-mScarlet die Bindung von 2N3R Tau-GFP an Mikrotubuli stark verminderte. Diese Studie liefert Hinweise darauf, dass weder Wildtyp-FUS noch die FUS P525L-Variante den axonalen Transport direkt beeinflussen, da sie nicht mit Kinesin-1 Motorproteinen oder Mikrotubuli interagieren. Ferner legen die vorliegenden Daten nahe, dass keine der FUS-Varianten die Kinesin-1 Motilität auf Mikrotubuli durch Wechselwirkung mit endogenen Adapterproteinen behindert, die in Zelllysaten von iPSC-differenzierte spinalen Motoneuronen vorhanden sind. Dies legt nahe, dass axonale Transportdefekte nicht durch direkte Wechselwirkung von zytoplasmatisch fehllokalisiertem FUS Protein mit Motorproteinen oder Mikrotubuli verursacht werden, sondern als Folge anderer pathologischer Ereignisse auftreten, die durch mutierte FUS-Varianten entstehen. Insbesondere zeigt diese Studie, dass ein erhöhtes Verhältnis von 4R:3R Tau-Isoformen ausreicht, um die Kinesin-1 Motilität auf Mikrotubuli zu behindern. Dies geschieht vermutlich aufgrund der erhöhten Bindung von 4R Tau-Isoformen an Mikrotubuli, weil dadurch die Bindung von 3R Tau-Isoformen an Mikrotubuli verhindert wird. Dies deutet stark darauf hin, dass ein erhöhtes Verhältnis von 4R:3R Tau-Isoformen, verursacht durch die fehlende regulatorische Beteiligung von FUS am Spleißen von Tau-Prä-mRNA aufgrund der zytoplasmatischen Fehllokalisation von FUS, wahrscheinlich zu den axonalen Transportdefekten beiträgt, die früh in der FUS-ALS-Pathologie beobachtet wurden.
|
55 |
A Computational Study of the Radial Growth of Axons and Neurofilament Kinetics during Postnatal DevelopmentNowier, Rawan M. 24 May 2022 (has links)
No description available.
|
56 |
THE EFFECTS OF AGING AND ALZHEIMER’S DISEASE ON RETROGRADE NEUROTROPHIN TRANSPORT IN BASAL FOREBRAIN CHOLINERGIC NEURONS / RETROGRADE NEUROTROPHIN TRANSPORT IN BASAL FOREBRIAN NEURONSShekari, Arman January 2021 (has links)
Basal forebrain cholinergic neurons (BFCNs) are critical for learning and memory. Profound and early BFCN degeneration is a hallmark of aging and Alzheimer’s disease (AD). BFCNs depend for their survival on the retrograde axonal transport of neurotrophins, proteins critical for neuronal function. Neurotrophins like brain derived neurotrophic factor (BDNF) and pro-nerve growth factor (proNGF) are retrogradely transported to BFCNs from their synaptic targets. In AD, neurotrophin levels are increased within BFCN target areas and reduced in the basal forebrain, implicating dysfunctional neurotrophin transport in AD pathogenesis. However, neurotrophin transport within this highly susceptible neuronal population is currently poorly understood.
We began by establishing protocols for the accurate quantification of axonal transport in BFCNs using microfluidic culture. We then determined the effect of age on neurotrophin transport. BFCNs were left in culture for up to 3 weeks to model aging in vitro. BFCNs initially displayed robust neurotrophin transport, which diminished with in vitro age. We observed that the levels of proNGF receptor tropomyosin-related kinase-A (TrkA) were reduced in aged neurons. Additionally, neurotrophin transport in BFCNs derived from 3xTg-AD mice, an AD model, was also impaired.
Next, we sought to determine a mechanism for these transport deficits. First, we determined that proNGF transport was solely contingent upon the levels of TrkA. We then found that elevation of oxidative stress, an established AD contributor, significantly reduced both TrkA levels and proNGF retrograde transport. TrkA levels are partially regulated by protein tyrosine phosphatase-1B (PTP1B), an enzyme whose activity is reduced by oxidation. PTP1B antagonism significantly reduced TrkA levels and proNGF retrograde transport in BFCNs. Treatment of BFCNs with PTP1B-activating antioxidants rescued TrkA levels, proNGF transport, and proNGF-mediated axonal degeneration.
Our results suggest that oxidative stress contributes to BFCN degeneration in aging and AD by impairing retrograde neurotrophin transport via oxidative PTP1B-mediated TrkA loss. / Thesis / Doctor of Philosophy (PhD) / During aging and Alzheimer’s disease (AD), the connections between neurons, a type of brain cell, break down, causing memory loss. This breakdown begins in a brain area called the basal forebrain. Basal forebrain neurons rely upon the transport of nutrients along their connections with other neurons, called axons, for proper function. This transport process becomes impaired in AD. Our goal was to understand why this happens. First, we determined that axonal transport was impaired with age and in basal forebrain neurons of mice genetically predisposed to develop AD. We recreated these impairments by increasing the levels of harmful molecules called reactive oxidative species (ROS). ROS levels increase with age and become abnormally high during AD. We found that increased ROS impair axonal transport and contribute to the breakdown of basal forebrain neurons. Our work suggests that reducing ROS will help prevent the breakdown of basal forebrain neurons in AD.
|
57 |
Examining FYCO1 as a modulator of autophagy for alpha-synuclein aggregate clearance in hiPSC derived neuronsBeer, Judith 21 February 2024 (has links)
Parkinson’s disease (PD) is the second most common neurodegenerative disorder worldwide affecting 1 - 2 % of the population older than 65. Patients develop characteristic motoric dysfunctions alongside early-onset non-motor symptoms including sleeping disorders, anxiety or depression and late-stage cognitive deficits such as dementia. To date, dopamine-replacement therapies are the gold standard for treating PD patients, improving motoric disorders by compensating for the loss of dopaminergic neurons in the substantia nigra, however no curative therapies to prevent disease progression are yet available. The pathomechanism underlying PD is complex, and the interplay of factors causing the disease is not entirely understood. The formation of α-synuclein protein aggregates, being one of the hallmarks associated with PD, is regarded as a major contributor to neuronal death and the spreading of PD pathology throughout different brain regions as the disease progresses. In the past, deficits in cellular protein clearance machinery have been affiliated with the accumulation of α-synuclein aggregates in PD. In particular, impairements in the macroautophagy-lysosomal pathway (here referred to as autophagy), which is involved in the degradation of large cytosolic components, were found to promote α-synuclein aggregation. In contrast, autophagic stimulation has been shown to benefit α-synuclein degradation and rescue PD phenotypes in cell and rodent models. In this study, I examined the role of FYCO1 in modulating neuronal autophagic processes for α-synuclein aggregate clearance in hiPSC-derived neurons. FYCO1 is an interaction partner of the central autophagic regulator RAB7 but was mostly unnoticed since it was not found detrimental to cellular homeostasis under basal conditions. Still, previous work of our group has identified FYCO1 to rescue PD phenotypes in model systems such as HEK cells and Drosophila, due to improved α-synuclein clearance following FYCO1 overexpression. Mechanistically, FYCO1 is involved in autophagosome-lysosome fusion events by binding to autophagic vesicles, which is required for autophagosome maturation and final degradation. In addition, FYCO1 affiliates autophagic vesicles with the cellular transport machinery via kinesin motor proteins. While fusion promotion can be assigned to an enhancing effect on autophagic clearance, FYCO1-induced anterograde transport promotion is opposite to the retrograde trafficking route of autophagic vesicles for maturation, which is of special importance in neuronal axons. Here, I illuminated FYCO1 effects on both axonal vesicle transport processes and somal vesicle pools to evaluate its ability to promote autophagy-related degradation in neurons. To this end, I established a lentiviral transduction-based model in hiPSC-derived neurons to express FYCO1 in the presence of either a fluorescently labelled marker for autophagic vesicles (LC3-TFL) or in the presence of α-synuclein. In neuronal axons, FYCO1 overexpression impaired retrograde autophagic transport resulting in less movement, implying an inhibitory effect on axonal autophagy. In contrast, FYCO1 enhanced autophagic processes in neuronal somata by upregulating LC3 levels, promoting the collection of α-synuclein in autophagic vesicle clusters and increasing the colocalisation of autophagosomes with lysosomal markers, pointing to the advance in autophagosome maturation. I could not fully resolve, whether α-synuclein degradation was promoted by this induction, as α-synuclein clearance was not indicated yet in the time course of three weeks. Still, studying mutant forms of FYCO1 revealed deficits in autophagosome maturation, which were not represented with wild-type FYCO1. In particular, the autophagosome-interaction domain was essential for autophagosome-lysosome fusion and additionally seemed to be relevant for autophagosomes entering axonal transport, while mutations in the kinesin binding domain caused autophagosome acidification impairments. The most pronounced effect of FYCO1 overexpression in neurons was the modulation of lysosomal vesicles. Besides increasing lysosomal localisation to autophagic vesicles, FYCO1 promoted retrograde trafficking of axonal lysosomal vesicles, by a so far unresolved mechanism. As increasing transport of lysosomes toward the neuronal soma can be connected to the upregulation of autophagy, I hypothesise FYCO1 to be a mediator in autophagy induction signalling. Nevertheless, such an effect needs to be verified in future studies. Conclusively, with this work, I contributed to the understanding of FYCO1’s role in enhancing neuronal autophagic processes but further studies in more advanced PD models are required to evaluate whether this could contribute to an increased clearance of α-synuclein aggregates.
|
58 |
Computational Modeling of Slow Axonal Transport of NeurofilamentsLi, Yinyun 25 September 2013 (has links)
No description available.
|
59 |
Le rôle de la protéine tau dans la mort des cellules ganglionnaires de la rétine : cas du glaucome et de la maladie d’AlzheimerChiasseu Mbeumi, Marius Trésor 12 1900 (has links)
La protéostasie désigne l’ensemble de stratégies développées par la cellule pour assurer la préservation de son protéome. Parmi celles-ci on peut citer le contrôle du repliement, de la concentration, et de la distribution des protéines. Les neurones en raison de leur importante activité métabolique représentent une population cellulaire particulièrement vulnérable à l’altération de la protéostasie, auquel cas on parle de protéinopathie. C’est notamment le cas des tauopathies et β-amyloidopathies, deux troubles neurodégénératifs, respectivement caractérisés par le dysfonctionnement de la protéine tau et du peptide amyloïde-β (Aβ). La protéine tau par le biais de son état de phosphorylation contrôle la stabilisation des microtubules, tandis que l’Aβ issu du clivage de l’APP (Amyloid Precursor Protein) serait impliqué dans la plasticité synaptique ; de telle sorte que l’altération du fonctionnement ou de la protéostasie de ces deux molécules engendre de graves troubles neuronaux.
Le glaucome, principale cause de cécité irréversible au monde, est une neuropathie dégénérative caractérisée par la perte spécifique des somas des cellules ganglionnaires de la rétine (CGR) et de leurs axones dans le nerf optique. Bien que l’hypertension oculaire (HTO) soit le principal facteur de risque, on ignore la cause du glaucome raison pour laquelle il n’existe aucun remède contre la maladie. La maladie d’Alzheimer (MA), principale cause de démence, est caractérisée par la présence d’enchevêtrement neurofibrillaires formés de la protéine tau dans les neurones et de plaques séniles constitué d’agrégats d’Aβ dans le parenchyme cérébral. De manière surprenante, de nombreuses études révèlent que le glaucome et la MA présentent de nombreux points communs. C’est ainsi que des agrégats d’Aβ et de tau ont été trouvés dans les CGR de sujets atteints du glaucome. De même les sujets victimes de la MA présentent des déficits visuels et une dégénérescence des CGR. Vu l’importance de tau pour la physiologie neuronale et son rôle de médiateur de la toxicité d’Aβ, nous proposons l’hypothèse selon laquelle le dysfonctionnement de la protéine tau résulte en la perte des CGR.
Les résultats présentés dans cette thèse reposent sur deux modèles expérimentaux de neurodégénérescence : un modèle de glaucome dépendant de HTO chez les rats (modèle de Morrison) et le modèle 3xTg de la MA chez lequel les souris expriment des mutations dans la protéine tau et la voie Aβ (PS1M146V, APPSWE, TauP301L). Chez ces animaux nous avons prélevé la rétine, le nerf optique et le cerveau, sur lesquels nous avons étudié l’expression, la distribution, et la neurotoxicité de tau par western blot, immunohistochimie et PCR quantitative. Nos résultats révèlent que comparativement aux contrôles sains, les rétines malades (glaucome et MA) présentent une accumulation de tau anormalement phosphorylée, tandis que son expression génique reste inchangée. Cette hausse de tau est la conséquence de sa relocalisation vers le compartiment somatodendritique et le segment axonal intrarétinien des CGR, ceci au détriment des axones myélinisés inclus dans le nerf optique. Nos données montrent que les CGR 3xTg présentent une baisse drastique du transport axonal antérograde, indiquant que l’altération de la distribution de tau pourrait être à la base de cette perte de fonction axonale. Finalement, nous démontrons que l’accumulation de tau dans la rétine malade provoque éventuellement la mort des CGR.
Au total, cette thèse démontre que les rétines atteintes du glaucome et de la MA présentent les manifestations cardinales des tauopathies à savoir l’accumulation, l’altération de la phosphorylation, et une distribution anormale de tau le tout culminant en la perte de fonction et la dégénérescence des CGR. / Proteostasis refers to a set of strategies developed by the cell to ensure the maintenance of
its proteome. These strategies include the control of protein folding, the amount, and the
distribution of the proteins. Neurons are endowed with a high metabolic rate and, as such, are
highly vulnerable to alterations in proteostasis, a situation referred to as proteinopathy.
Tauopathies and β-amyloidopathies are two such instances wherein tau and amyloid-β,
respectively, undergo dysfunction. Tau protein is a microtubule stabilising protein which
function is regulated by its phosphorylation state, while Aβ a product of the cleavage of APP
(Amyloid Precursor Protein) which is thought to be involved in the regulation of synaptic
plasticity. Therefore, functional or proteostatic alterations of these proteins result in harmful
consequences for neurons.
Glaucoma, the main cause of irreversible blindness, is a degenerative optic neuropathy
characterised by the selective loss of retinal ganglion cells (RGC) and their axons in the optic
nerve. Although ocular hypertension (OHT) is the main risk factor for the development of
glaucoma, the cause of the disease is still unknown. There is currently no cure for glaucoma and
the only available treatment is to reduce OHT pharmacologically or surgically. Alzheimer’s
disease, the main cause of dementia, is characterized by the presence of neurofibrillary tangles
made of tau protein in neurons and senile plaques made of Aβ in the cerebral parenchyma.
Intriguingly, several studies have shown that glaucoma and AD share several common features.
For instance, aggregates of tau and Aβ have been described in the retina of glaucoma subjects.
Likewise, AD patients show visual defects associated with RGC degeneration. Mindful of the
importance of tau for neuronal physiology, and of its role as mediator of Aβ toxicity, we put
forward the hypothesis that tau protein alterations leads to RGC dysfunction and death.
vii
The results presented in this thesis were based on two experimental models of
neurodegeneration: a model of OHT-dependent glaucoma in rats leading to RGC death
(Morrison model), and the 3xTg model of AD wherein mice overexpress mutant forms of tau and
Aβ (PS1M146V, APPSWE, TauP301L). Using these animals, we collected retina, optic nerve, and
brains which we used to study tau expression, distribution and neurotoxicity by western blot,
immunohistochemistry and real-time PCR. Our results show that, when compared to healthy
controls, the diseased retina (glaucoma or AD) display accumulation of abnormally
phosphorylated tau while its gene expression remains unchanged. The increase of retinal tau
protein might result from the redistribution of the protein in the somatodendritic compartment
and intraretinal axonal segment of RGCs at the expense of the extraocular axonal segment
enclosed within the optic nerve. Our data also demonstrate that RGCs from 3xTg mice show a
drastic reduction of anterograde axonal transport suggesting that missorted tau might underlie
these functional deficits. Lastly, we demonstrate that tau accumulation in the diseased retina
eventually promotes RGC death.
Altogether, this thesis demonstrates that the glaucomatous and AD retinas present the
cardinal features of tauopathies including tau accumulation, altered phosphorylation, and
mislocalization which contribute to RGC dysfunction and subsequent death.
|
Page generated in 0.0884 seconds