Spelling suggestions: "subject:"rab7"" "subject:"ab7""
1 |
Intracellular Survival Mechanisms of Zooxanthellae in Cnidarian Digestive Cells¡XThe Critical Role of ApRab5 and ApRab7Cheng, Ying-Min 21 June 2004 (has links)
Marine cnidarian-microalgal endosymbiosis is an ecologically important intracellular association. However, its underlying molecular mechanisms are essentially unknown. In light of the critical roles of host phagocytosis in intracellular fates of a variety of microbes, and the Rab small GTPases as key mediators of host-symbiont interaction, we set out to investigate the potential involvement of Aiptasia Rab proteins in the model photosynthetic endosymbiosis between the sea anemone, Aiptasia pulchella and the symbiotic dinoflagellate (commonly called zooxanthellae), Symbiodinium spp. Many Aiptasia Rab homologue-encoding cDNA fragments were first cloned through our degenerate RT-PCR and RACE reactions. Significantly, Aiptasia homologues of Rab5 and Rab7 (ApRab5 and ApRab7), two Rabs known to be critical regulators of phagosome maturation were also identified in the screen. The overall sequence identities of ApRab5 and ApRab7 to those of human Rab5C and Rab7 were very extensive, and EGFP reporter, protein fractionation, and immuno-fluorescence studies all suggested that the similarity of the Aiptasia Rabs to their human counterparts extended to the functional levels. Finally, although the phagosomes enclosing latex beads stained positive for ApRab5 and ApRab7 with kinetics characteristics of normal phagosomal maturation, the phagosomes housing zooxanthellae only stained positive for ApRab5. Furthermore, the association of ApRab5 with and the exclusion of ApRab7 from the zooxanthellae-containing phagosomes could be reversed by the heat-killed or photosynthesis-impaired symbionts. Overall, our present study has identified ApRab5 and ApRab7 as potential key regulators of the Aiptasia-Symbiodinium endosymbiosis
|
2 |
Études des propriétés fusogéniques des phagosomes durant leur maturationNsumu, Ndona N. January 1997 (has links)
Mémoire numérisé par la Direction des bibliothèques de l'Université de Montréal.
|
3 |
The Effects of SOCS1, SOCS3 and HSV-1 Infection on Morphology, Cell Viability and Rab7 Expression in Polarized M1 and M2 Raw 264.7 Murine MacrophagesHey, Jessica Renee 01 June 2018 (has links)
No description available.
|
4 |
Interação de Escherichia coli enteropatogênica (EPEC) atípica com fagócito profissional. / Interaction atypical enteropathogenic Escherichia coli (EPEC) with professional phagocytes.Melo, Keyde Cristina Martins de 03 March 2016 (has links)
O aumento dos casos de diarreia causados por EPECa evoca a sua capacidade de adaptação e patogenicidade. O objetivo deste estudo foi investigar o comportamento da EPECa na interação com macrófagos (fagocitose e antifagocitose). O estudo da fagocitose das cepas LB7 (O55:H7), LB13 (O111:abH9) e BA487 (O55:H7) em macrófagos J774A1 mostrou sobrevivência intracelular em presença de NO. EPECa impede a maturação do vacúolo parasitóforo. A sobrevivência em macrófago derivado de C3H/HeJ, mutante do tlr4, foi reduzida e em macrófago de C57BL/6 não foi observada. O fator antigagocítico (Fa) secretado pela LB7, já detectado pelo grupo, apresenta natureza peptídica e a sua ação não é específica de EPEC, pois inibe também a fagocitose de Shigella e látex. A secreção do Fa foi avaliada em M9 e DMEM. O produto do fracionamento do sobrenadante do cultivo por SPE apresentou Fa em ambos meios. No entanto, a secreção em M9 é baixa e não foi detectada por HPLC. O Fa do DMEM obtido por HPLC mostrou-se citotóxico. Novos meios de cultivo deverão ser estudados para a identificação do Fa. / The increase in the numbers of diarrhea cases caused by aEPEC denotes its adaptability and pathogenicity. The objective of this study was to investigate the behavior of aEPEC in the interaction with macrophages (phagocytosis and anti-phagocytosis). Strains LB7 (O55:H7), LB13 (O111:abH9) and BA487 (O55:H7) were shown to survive within J774A1 macrophages in the presence of NO. aEPEC prevents maturation of the parasitophorus vacuole. Survival inside C3H/HeJ derived macrophages, mutant for tlr4, decreased and was not observed in C57BL/6 derived macrophages. The anti-phagocytic factor (AF), secreted by LB7 and previously detected by our group, is peptidic and its action is not specific to EPEC as it also inhibits phagocytosis of Shigella and latex. Secretion of AF was evaluated in M9 and DMEM. AF was detected after SPE fractionation of both culture media. However, the secretion in M9 is low and was not detected by HPLC. The DMEM HPLC fraction containing AF was cytotoxic. New culture media will be studied for the identification of AF.
|
5 |
Étude des fonctions de survie de l'oncogène Bcl xL : rôles de la déamidation de Bcl xL et de l'interaction avec la protéine Rab7 / Study of the survival functions of the oncogene Bcl xL : the roles of Bcl xL deamidation and interaction with the protein Rab7Beaumatin, Florian 19 December 2012 (has links)
La protéine Bcl xL, membre de la famille de Bcl 2, est essentiellement décrite pour son rôle dans l'inhibition de la mort des cellules. Récemment, un nouveau rôle lui a été attribué dans la régulation de la macro-autophagie, processus principalement décrit pour promouvoir la survie des cellules. Bcl xL exerce donc ses fonctions de survie à travers la régulation d'au moins deux processus différents.Si les fonctions anti-apoptotiques de Bcl xL ne sont plus à démontrer, ses fonctions dans la régulation de l'autophagie sont davantage débattues. Ainsi, nous avons centré ce travail sur la caractérisation des fonctions pro-autophagiques de Bcl xL afin de mieux comprendre ses fonctions de survie. Nos résultats suggèrent que Bcl xL subit in vivo et dans des cellules en culture une modification de type déamidation. Nous montrons que cette modification renforce les fonctions pro-autophagiques de Bcl xL sans affecter ses fonctions anti-apoptotiques. Par ailleurs, nous nous sommes intéressés à l'interaction entre Bcl xL et la petite GTPase Rab7, une protéine essentielle au processus autophagique et endocytique. Nous avons généré, et analysé d'un point de vue fonctionnel, des mutants de Bcl xL de type perte ou gain d'interaction avec Rab7. Notre principale conclusion est que Bcl xL stimule le trafic des vésicules médié par Rab7, et nous proposons que les fonctions pro-autophagiques de Bcl xL sont majoritairement dépendantes de son interaction avec Rab7. Cette étude contribue ainsi à mieux définir les fonctions pro-autophagiques de Bcl xL ainsi que les processus qui les régulent. Par ailleurs, elle approfondit nos connaissances des fonctions oncogéniques de Bcl xL en intégrant la composante supplémentaire de ses fonctions pro-autophagiques, et ouvre ainsi des perspectives pour l'élaboration de nouvelles stratégies thérapeutiques anti-cancéreuses notamment. / Bcl xL, a member of the Bcl-2 family, is mainly described for its role in the inhibition of cell death. Recently, Bcl xL was attributed a new role in the regulation of macro-autophagy, a process described mainly for its contribution to cell survival. Hence, Bcl xL wields its survival functions through the regulation of at least two different processes. If the anti-apoptotic functions of Bcl xL are now well established, its role in the regulation of autophagy is more debated. Therefore we focused this work on the characterization of Bcl xL pro-autophagic functions in order to get a better understanding of its survival functions. Our results suggest that Bcl xL undergoes in vivo and in cultured cells a modification called deamidation. We show that this modification enhances its pro-autophagic functions without affecting its anti-apoptotic functions. In addition, we characterized an interaction between Bcl xL and the small GTPase Rab7 which is essential for autophagy and endocytosis. We generated mutants of Bcl xL either gaining or loosing interaction with Rab7. The functional analysis of these mutants suggested that Bcl xL stimulates the vesicle trafficking mediated by Rab7, and prompts us to hypothesize that Bcl xL pro-autophagic functions are mainly dependent on its interaction with Rab7. This study helps to better define the pro-autophagic functions of Bcl xL and the processes regulating them. It provides further insights in the oncogenic functions of Bcl xL by implementing additional component of its pro-autophagic functions, and opens perspectives for the development of new therapeutic strategies against cancer progression.
|
6 |
Intracellular degradation of low-density lipoprotein probed with two-color fluorescence microscopyHumphries, William Henry, IV 02 November 2011 (has links)
The vesicle-mediated degradation of low-density lipoprotein (LDL) is an essential cellular function due to its role in cellular biosynthesis of membranes and steroids. Using multi-color single particle tracking fluorescence microscopy, the intracellular degradation of LDL was probed in live, intact cells. Unique to these experiments is the direct observation of LDL degradation using an LDL-based probe that increases fluorescence intensity upon degradation. Specifically, individual LDL particles were labeled with multiple fluorophores resulting in a quenched fluorescent signal. The characteristics of the vesicle responsible for degradation were determined and the vesicle dynamics involved in LDL degradation were quantified. Visualization of early endosomes, late endosomes and lysosomes was accomplished by fluorescently labeling vesicles with variants of GFP. Transient colocalization of LDL with specific vesicles and the intensity of the LDL particle were measured simultaneously. These studies, which are the first to directly observe the degradation of LDL within a cell, strive to completely describe the endo-lysosomal pathway and quantify the dynamics of LDL degradation in cells.
|
7 |
Identifying the Effects of a Human Dynein Mutation on GFP-Rab7 Axonal Transport in Embryonic Mouse NeuronsWilson, Natalie E 01 January 2017 (has links)
The first dynein mutation found in humans that caused disease was a cytoplasmic dynein 1 heavy chain (DYNC1H1 in humans) p.His306Arg mutation, first described by Weedon et al. in 2011. This mutation caused Charcot-Marie-Tooth (CMT) subtype 2O. CMT has a prevalence of approximately 1 in 2500 people, making it the most common hereditary neuromuscular disorder. Cytoplasmic dynein 1 is used by eukaryotic cells for minus-end directed microtubule-based transport of cargo. One such cargo is Rab7, a late endosomal marker. The purpose of this study is to identify the effects of this mutation on the transport of GFP-tagged Rab7 cargo in neurons from wild type (HH), heterozygous mutant (HR), and homozygous mutant (RR) mice harboring a DYNC1HI His306Arg mutation. Mouse embryos were euthanized, dissected to collect the hippocampal and cortical brain tissues, and these tissues were digested to isolate neurons. Nucleofection was used to introduce the exogenous GFP-Rab7 gene construct. These neurons were plated and imaged at 10 days in vitro using wide-field epifluorescence microscopy to generate image stacks of fluorescent GFP-Rab7 vesicles. Kymograph analysis was performed on the image stacks using MetaMorph software to measure several characteristics of movement. Statistical analysis of the data from each of the three genotypes shows there is no significant difference in Rab-7 transport between the three genotypes.
|
8 |
Investigations into the Nature of the Endosomal System in Plasmodium falciparumKrai, Priscilla M. 27 August 2013 (has links)
The parasite Plasmodium falciparum causes the most virulent form of human malaria and is responsible for the vast majority of malaria-related deaths. During the asexual intraerythrocytic stage, the parasite must transport newly synthesized proteins and endocytosed cargo to a variety of organelles, many of which are formed de novo and have no human equivalent. This process in mammalian cells would utilize an endosomal protein trafficking system, but no endosomal structures or proteins have been described in the parasite. Prior work on the parasite genome indicated that several proteins, which could potentially coordinate an endosomal network, were encoded in the genome and expressed during the asexual parasite stages. In this study, we have localized and attempted to further characterize these proteins in the context of the endosomal system. Two well-conserved protein components of the late endosome, the retromer cargo-selective complex and Rab7, were found on a previously un-described inherited structure adjacent to the parasite Golgi apparatus and in close opposition to nascent rhoptries (specialized secretory organelles required for invasion). The retromer cargo-selective complex was also in close proximity to its putative cargo, a P. falciparum homolog of the sortilin family of protein sorting receptors, PfSortilin. Another protein, PfFCP, the sole FYVE domain-containing protein in the P. falciparum genome, was localized to the membrane of a specialized acidic organelle, known as the food vacuole, where the parasite catabolizes the majority of its host cell hemoglobin. We analyzed the effects of a PfFCP dominant negative mutant and found that it altered food vacuole morphology and trafficking. A previous report localized the early endosome phosphoinositide, phosphatidylinositol 3-phosphate, to the food vacuole membrane, and in conjunction with our studies on PfFCP, this has raised doubts about the food vacuole as a lysosome equivalent in the parasite. The combination of both early and late endosome protein homologs in the parasite, and their potential function, has led to a new model of protein trafficking within the parasite that includes the food vacuole as a terminal early endosome and the apical organelles as lysosome equivalents. / Ph. D.
|
9 |
THE EFFECTS OF AGING AND ALZHEIMER’S DISEASE ON RETROGRADE NEUROTROPHIN TRANSPORT IN BASAL FOREBRAIN CHOLINERGIC NEURONS / RETROGRADE NEUROTROPHIN TRANSPORT IN BASAL FOREBRIAN NEURONSShekari, Arman January 2021 (has links)
Basal forebrain cholinergic neurons (BFCNs) are critical for learning and memory. Profound and early BFCN degeneration is a hallmark of aging and Alzheimer’s disease (AD). BFCNs depend for their survival on the retrograde axonal transport of neurotrophins, proteins critical for neuronal function. Neurotrophins like brain derived neurotrophic factor (BDNF) and pro-nerve growth factor (proNGF) are retrogradely transported to BFCNs from their synaptic targets. In AD, neurotrophin levels are increased within BFCN target areas and reduced in the basal forebrain, implicating dysfunctional neurotrophin transport in AD pathogenesis. However, neurotrophin transport within this highly susceptible neuronal population is currently poorly understood.
We began by establishing protocols for the accurate quantification of axonal transport in BFCNs using microfluidic culture. We then determined the effect of age on neurotrophin transport. BFCNs were left in culture for up to 3 weeks to model aging in vitro. BFCNs initially displayed robust neurotrophin transport, which diminished with in vitro age. We observed that the levels of proNGF receptor tropomyosin-related kinase-A (TrkA) were reduced in aged neurons. Additionally, neurotrophin transport in BFCNs derived from 3xTg-AD mice, an AD model, was also impaired.
Next, we sought to determine a mechanism for these transport deficits. First, we determined that proNGF transport was solely contingent upon the levels of TrkA. We then found that elevation of oxidative stress, an established AD contributor, significantly reduced both TrkA levels and proNGF retrograde transport. TrkA levels are partially regulated by protein tyrosine phosphatase-1B (PTP1B), an enzyme whose activity is reduced by oxidation. PTP1B antagonism significantly reduced TrkA levels and proNGF retrograde transport in BFCNs. Treatment of BFCNs with PTP1B-activating antioxidants rescued TrkA levels, proNGF transport, and proNGF-mediated axonal degeneration.
Our results suggest that oxidative stress contributes to BFCN degeneration in aging and AD by impairing retrograde neurotrophin transport via oxidative PTP1B-mediated TrkA loss. / Thesis / Doctor of Philosophy (PhD) / During aging and Alzheimer’s disease (AD), the connections between neurons, a type of brain cell, break down, causing memory loss. This breakdown begins in a brain area called the basal forebrain. Basal forebrain neurons rely upon the transport of nutrients along their connections with other neurons, called axons, for proper function. This transport process becomes impaired in AD. Our goal was to understand why this happens. First, we determined that axonal transport was impaired with age and in basal forebrain neurons of mice genetically predisposed to develop AD. We recreated these impairments by increasing the levels of harmful molecules called reactive oxidative species (ROS). ROS levels increase with age and become abnormally high during AD. We found that increased ROS impair axonal transport and contribute to the breakdown of basal forebrain neurons. Our work suggests that reducing ROS will help prevent the breakdown of basal forebrain neurons in AD.
|
10 |
HIV-1-induced nuclear invaginations mediated by VAP-A, ORP3, and Rab7 complex explain infection of activated T cellsSantos, Mark F., Rappa, Germana, Karbanová, Jana, Diana, Patrizia, Cirrincione, Girolamo, Carbone, Daniela, Manna, David, Aalam, Feryal, Wang, David, Vanier, Cheryl, Corbeil, Denis, Lorico, Aurelio 27 November 2024 (has links)
The mechanism of human immunodeficiency virus 1 (HIV-1) nuclear entry, required for productive infection, is not fully understood. Here, we report that in HeLa cells and activated CD4⁺ T cells infected with HIV-1 pseudotyped with VSV-G and native Env protein, respectively, Rab7⁺ late endosomes containing endocytosed HIV-1 promote the formation of nuclear envelope invaginations (NEIs) by a molecular mechanism involving the VOR complex, composed of the outer nuclear membrane protein VAP-A, hyperphosphorylated ORP3 and Rab7. Silencing VAP-A or ORP3 and drug-mediated impairment of Rab7 binding to ORP3-VAP-A inhibited the nuclear transfer of the HIV-1 components and productive infection. In HIV-1-resistant quiescent CD4⁺ T cells, ORP3 was not hyperphosphorylated and neither VOR complex nor NEIs were formed. This new cellular pathway and its molecular players are potential therapeutic targets, perhaps shared by other viruses that require nuclear entry to complete their life cycle.
|
Page generated in 0.0524 seconds