• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 34
  • 24
  • 14
  • 6
  • 4
  • 3
  • 2
  • 1
  • 1
  • Tagged with
  • 98
  • 25
  • 20
  • 16
  • 14
  • 13
  • 12
  • 12
  • 11
  • 11
  • 9
  • 8
  • 8
  • 7
  • 7
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Sparse Processing Methodologies Based on Compressive Sensing for Directions of Arrival Estimation

Hannan, Mohammad Abdul 29 October 2020 (has links)
In this dissertation, sparse processing of signals for directions-of-arrival (DoAs) estimation is addressed in the framework of Compressive Sensing (CS). In particular, DoAs estimation problem for different types of sources, systems, and applications are formulated in the CS paradigm. In addition, the fundamental conditions related to the ``Sparsity'' and ``Linearity'' are carefully exploited in order to apply confidently the CS-based methodologies. Moreover, innovative strategies for various systems and applications are developed, validated numerically, and analyzed extensively for different scenarios including signal to noise ratio (SNR), mutual coupling, and polarization loss. The more realistic data from electromagnetic (EM) simulators are often considered for various analysis to validate the potentialities of the proposed approaches. The performances of the proposed estimators are analyzed in terms of standard root-mean-square error (RMSE) with respect to different degrees-of-freedom (DoFs) of DoAs estimation problem including number of elements, number of signals, and signal properties. The outcomes reported in this thesis suggest that the proposed estimators are computationally efficient (i.e., appropriate for real time estimations), robust (i.e., appropriate for different heterogeneous scenarios), and versatile (i.e., easily adaptable for different systems).
12

Du sillage des insectes aux gaz de Fermi ultra-froids : dynamique des fluides classiques et quantiques

Chevy, Frédéric 24 November 2008 (has links) (PDF)
Dans cette exposé, je présenterai quelques résultats théoriques et expérimentaux sur la dynamique des fluides classiques et quantiques. Dans une première partie, je présenterai un bref exposé sur la nucléation de gouttes de pluie en montrant le rôle de l'instabilité classique de Rayleigh Taylor dans la limitation de leur taille, et j'étudierai ensuite leur impact sur des surfaces non mouillantes. Je passerai ensuite aux gaz de fermions ultra-froids et nous verrons comment des expériences récentes ont permis de préciser le lien existant entre supraconductivité et condensation de Bose-Einstein.
13

BCS-to-BEC Quantum Phase Transition in High-Tc Superconductors and Fermionic Atomic Gases: A Functional Integral Approach

Botelho, Sergio S. 12 September 2005 (has links)
The problem of the evolution from BCS theory with cooperative Cooper pairing to the formation and condensation of composite bosons has attracted considerable attention for the past several decades. It has gained renewed impetus in the mid-eighties with the discovery of the high-Tc superconductors, which have a coherence length comparable to the interparticle spacing. More recently, this subject has spurred a great deal of research activity in connection with experiments involving dilute atomic gases of fermionic atoms. The initial objective of this work will be to use functional integral techniques to analyze the low-temperature BCS-to-BEC evolution of d-wave superconductors within the saddle point (mean field) approximation for a continuum model. Then, the same mathematical formalism will be applied to the problem of the BCS-to-BEC evolution of fully spin-polarized p-wave Fermi gases in two dimensions. We find that a quantum phase transition occurs for both systems as they are driven from the BCS-like regime of weakly interacting fermionic pairs to the opposite BEC-like regime of strongly interacting bosonic molecules. This is in contrast to the smooth crossover predicted and observed in systems that exhibit s-wave pairing symmetry. We calculate several spectroscopic and thermodynamic properties that signal the occurrence of this phase transition, and suggest some possible experimental realizations. Finally, fluctuations about the saddle point solution are included in the calculations, and the effects of such correction are analyzed in the low (T~0) and high (T~Tc) temperature limits. We conclude that, at high temperatures, the bosonic degrees of freedom that arise from two-particle bound states become essential to describe the strong coupling limit, as the saddle point approximation alone becomes unreliable.
14

Adiabatic dynamics of low-lying collective modes in the BEC-BCS crossover

Jiang, Minxi 28 September 2011 (has links)
As the hydrodynamic theory breaks down with the local density ap- proximation in the fermionic superfluid with spin-polarization, we develop a general formalism of the adiabatic dynamics for the low-lying collective modes in the BEC-BCS crossover, which is exact in the adiabatic limit. This adi- abatic dynamic theory is based on a static density functional theory of the spin-polarized superfluid system, which we derive as a generalization of the conventional density functional theory of superfluid for current experimental interests. A special case where the system is uniform and analytically solv- able is studied in detail. We show that our adiabatic equations of motion are reduced to the hydrodynamic equations of motion within local density approx- imation, which provides a solid microscopic foundation for the well-publicized phenomenological hydrodynamic theory. / text
15

Proton-neutron pairing correlations in atomic nuclei

Négréa, Daniel 10 September 2013 (has links) (PDF)
The common understanding of proton-neutron pairing, whose fingerprints are currently investigated in N = Z nuclei, relies on Cooper pair mechanism and BCS-type models. In the present thesis we present an alternative approach which, contrary to BCS models, conserves exactly the particle number and the isospin. In this approach the ground state of N=Z nuclei is described as a condensate of alpha-like quartets built by two neutrons and two protons coupled to the total isospin T=0 and total spin J=0. The comparison with exact shell model calculations shows that the quartet condensation model (QCM) gives a very accurate description of pairing correlations in N=Z nuclei, much better than the BCS models. It is also shown that proton-neutron pairing and alpha-type condensation are important not only for N=Z nuclei but also for nuclei with excess neutrons. In the latter case the condensate of alpha-like quartets coexist with the condensate of the neutron pairs in excess relative to the N=Z isotope. Using the framework of QCM we have also studied the competition between the isovector and the isoscalar proton-neutron pairing in nuclei with N=Z. Our results indicate that the contribution of isoscalar pairing to the ground state pairing correlations is very small compared to the isovector pairing.
16

Evaluation of performance testing and computer simulations for Quality by Design approaches of oral dosage forms

Almukainzi, May Unknown Date
No description available.
17

Evaluation of performance testing and computer simulations for Quality by Design approaches of oral dosage forms

Almukainzi, May 06 1900 (has links)
Performance testing and computer simulations have promising applications in Quality by Design approaches. The objectives of these studies were to investigate the performance of the disintegration test using different setups in addition to comparing the performance of the disintegration test with the rupture test using soft gelatin dietary supplements capsules. Classifying common herbs according to the Biopharmaceutical Classification System approach was also investigated using ADMET predictor TM. The final objective was evaluation the predictive power of computer simulations of in vitro dissolution in different media. The studies concluded that the disintegration test is robust only if firm specifications were applied. However, this test has no advantage over the rupture test. In silico methods can be used to classify herbs according to the BCS. Computer simulations of dissolution in vitro can be also a potential tool to estimate the dissolution behavior. These tools facilitate prediction of quality desired in a product. / Pharmaceutical Sciences
18

Teoria BCS com efeito Rashba

Dias, Cleverton Oliveira 25 November 2015 (has links)
Submitted by Bianca Neves (oliveirabia1@ymail.com) on 2016-04-19T19:40:49Z No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-04-27T20:50:09Z (GMT) No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) / Approved for entry into archive by Divisão de Documentação/BC Biblioteca Central (ddbc@ufam.edu.br) on 2016-04-28T14:45:10Z (GMT) No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) / Made available in DSpace on 2016-04-28T14:45:10Z (GMT). No. of bitstreams: 1 Dissertação- Cleverton Oliveira Dias.pdf: 1220759 bytes, checksum: a90af3e1cf4a80152ef01c95168c9138 (MD5) Previous issue date: 2015-11-25 / CAPES - Coordenação de Aperfeiçoamento de Pessoal de Nível Superior / This dissertation presents systematically the traditional superconductors, taking into account its discovery, properties that characterize the theory describing and changes taking place in their thermodynamic properties when subject to spin-orbit interaction Rashba. In the rst part are the key topics discussed related to phenomenon of superconductivity. It begins with a chapter 1 approach of the historical evolution of superconductivity and presentation properties that characterize a conventional superconductor, in addition to de ne superconductors Type I (conventional) and type II. The Chapter 2 is intended for an explanation of the microscopic BCS theory whose application is associated with type I superconductors, although this chapter argue about the interaction of electrons with the network, thus forming what is called Cooper pairs. The Chapter 3 is intended to introduce the Rashba model, which can be veri ed in two ways: by spontaneous generation of electric eld the junction interface of two materials or because application of the an external electric eld. In work not take into account the so that will be produced this electric eld. In Chapter 4 it shows the model Hamiltonian that constitutes the junction BCS Hamiltonian with the Hamiltonian of Rashba, from this model it is intended to calculate the e ect of Rashba interaction on the gap energy using the method of canonical transformations, consisting to assess the evolution of the operator concerned by a equation of dynamic evolution, allowing us nd the self energy carriers and their respective eigenvalues and associates them to gaps of energy. As a result of Chapter 4, Chapter 5 determine the gap superconductor function of temperature and the parameter R Rashba and as the thermodynamic properties of the model studied in this chapter also opens a space for comments and discussions. We end with Chapter 6, presenting partial conclusions, Related analytical curve made from certain data numerical, these curves will analyze the variation in thermodynamic properties of superconductors because the e ect Rashba. / A presente dissertação consiste em apresentar de forma sistemática os supercondutores tradicionais, levando em consideração sua descoberta, as propriedades que o caracterizam, a teoria que os descrevem e as mudanças que ocorrem em suas propriedades termodinâmicas quando submetidos a interação spin- orbita de Rashba. Na primeira parte são discutidos os t ópicos fundamentais referentes ao fenômeno da supercondutividade. Inicia-se o capítulo 1 com uma abordagem da evolução hist orica da supercondutividade e a apresentação das propriedades que caracterizam um supercondutor convencional, al em de de nir supercondutores tipo I (convencionais) e tipo II. O cap tulo 2 destina-se a uma explana c~ao da teoria microscópica BCS, cuja aplicação está associada a supercondutores de tipo I, ainda neste capítulo argumenta-se sobre a interação dos elétrons com a rede, formando assim o que chamamos de pares de Cooper. O capiítulo 3 destina-se a apresentar o modelo de Rashba, que pode ser verificado de duas maneiras: por geração espontânea de campo elétrico na interface da junção de dois materiais ou em razão da aplicação de um campo elétrico externo. No trabalho não se levar a em conta a maneira que ser a produzido esse campo elétrico. No capítulo 4 apresenta-se o Hamiltoniano do modelo, que consiste na junção do Hamiltoniano BCS com o Hamiltoniano de Rashba, a partir deste modelo pretende-se calcular o efeito da intera ção de Rashba, sobre os gaps de energia utilizando o m etodo das transforma ções canônicas, que consiste em avaliar a evolu ção temporal do operador em questão por meio de uma equa ção de evolução dinâmica, o que nos permitir a encontrar os autovetores de energia e seus respectivos autovalores e associa-los aos gaps de energia. Como consequência do capítulo 4, no cap tulo 5 determinaremos o gap do supercondutor em fun ção da temperatura e do parâmetro de Rashba R, bem como as propriedades termodinâmicas do modelo estudado, neste cap tulo tamb em abre-se um espa co para comentarios e discussões. Finalizamos com o cap tulo 6, apresentando conclusões parciais, relacionadas a an alise de algumas curvas feitas a partir de dados num ericos, estas curvas permitirão analisar a varia ção nas propriedades termodinâmicas dos supercondutores devido o efeito Rashba.
19

Fluctuation and dimensionality effects on superconductivity in the BCS-BEC crossover regime / BCS-BECクロスオーバー域にある超伝導へのゆらぎと次元性の効果

Adachi, Kyosuke 25 March 2019 (has links)
京都大学 / 0048 / 新制・課程博士 / 博士(理学) / 甲第21546号 / 理博第4453号 / 新制||理||1639(附属図書館) / 京都大学大学院理学研究科物理学・宇宙物理学専攻 / (主査)准教授 池田 隆介, 教授 前野 悦輝, 教授 川上 則雄 / 学位規則第4条第1項該当 / Doctor of Science / Kyoto University / DFAM
20

Unconventional Superconductivity Mediated by the Higgs Amplitude Mode in Itinerant Ferromagnets:

Forestano, Roy Thomas January 2021 (has links)
Thesis advisor: Kevin Bedell / Over 20 years ago, Blagoev et. al. predicted an s-wave pairing instability in a ferromagnetic Fermi liquid (FFL) as a consequence of spin fluctuations [5]. Shortly after, it was discovered that, when magnetic interactions in the ferromagnetic superconductor UGe2 dominate, quasiparticles with parallel spin form pairs in odd-parity orbitals; i.e., a form of spin-triplet p-wave superconductivity emerges, in contrast to Blagoev et. al.'s prediction [6]. In this work, we return to this issue by introducing the effects of a gapped amplitude (or "Higgs") mode on the vertex corrections and subsequent form of Cooper pairing. As the Higgs mode only propagates in the presence of a finite spin current, such an amplitude mode results in strong momentum-dependence in the many-body vertex. This results in the emergence of an unconventional form of superconductivity mediated by unconventional low-energy modes in a weak itinerant ferromagnet. / Thesis (BS) — Boston College, 2021. / Submitted to: Boston College. College of Arts and Sciences. / Discipline: Scholar of the College. / Discipline: Physics. / Discipline: Mathematics.

Page generated in 0.0284 seconds