• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 6
  • 4
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

The modelling and simulation of energy management control systems

MacQueen, John January 1997 (has links)
This thesis is concerned with improving the integrity and applicability of building energy management systems(BEMS) simulation tools. The present work attempts to overcome certain inadequacies of contemporary simulation applications with respect to environmental control systems, by developing novel building control systems modelling schemes. These schemes are then integrated within a state-of-the-art simulation environment so that they can be employed in practice. After reviewing the existing techniques and various approaches to control systems design and appraisal,a taxonomy of building control system entities grouped in terms of logical, temporal and spatial element, is presented. This taxonomy is subsequently used to identify the models, algorithms, and features comprising a comprehensive modelling environment. Schemes for improving system integrity and applicability are presented based upon a simulation approach which treats the building fabric and associated plant sy stems as an integrated dynamic system. These schemes facilitate the modelling of advanced BEMS control structure and strategies, including: - hierarchical (systems level and zone-level) control systems; - single input, single output (SISO) and multiple input, multiple output (MIMO) systems; - advanced BEMS controller algorithms; - simulated-assisted control strategies based on advanced simulation time-step control techniques. The installation of the developed schemes within a whole building simulation environment, ESP-r, is also presented. Issues related to verification of the developed schemes are subsequently discussed. Users of control system simulation programs are identified and categorised. Typical applications of the new control modelling features are demonstrated in terms of these user groups. The applications are based on both research and consultancy projects. Finally, the future work required to increase the applicability and accuracy of building control simulation tools is elaborated in terms of the required integration with other technical subsystems and related computer-aided design tools.
2

Analysis and Cases Study of BEMS Application and Its Classification Indexes

Peng, Li-te 17 January 2007 (has links)
In the year of 1990, the BEMS concept has been developed into an open web-based structure where internet has been utilized widely. Universally adapted communication protocols, such as BACNet and Lonworks have been applied in engineering practices and created huge opportunity for building energy conservation designs. In this research, the development of the BEMS system has been discussed and analyzed in detail including its hardware infrastructure and software requirements, so that the HVAC , lighting and power subsystems can be integrated while remote control can be achieved. The classification of BEMS system, to be adapted in Taiwan, has been proposed and published by the end of year 2006, which enables real-time online building energy auditing with energy conservation potential assessed. Design examples, such as general hospitals, department stores, hotels, have been selected and analyzed to demonstrate the feasibility in adapting BEMS system in Taiwan with successful results.
3

Development of BEMS Diagnostic and Intelligent Expert Technology for Air-conditioning Systems

Dai, Chi-fu 11 June 2012 (has links)
When central HVAC systems are under commercial operation, all operational parameters, including chilled water supply temperature, return water temperature, chilled water flow rate, and power consumption as the key factors in affecting system energy efficiency.However, in Taiwan there is still lacking of the regression equations of chillers under local weather conditions, and has to rely on manual operation based on experiences. This is also the major short-comings in implementing TAB, and is the best way to renovate the green buildings to make them more intelligent. In this study, theoretical analysis and experimental investigation will be applied simultaneously. In selecting cases from the BeeUp program, actual operational data including COP can be fitted into experimental model to facilitate TAB engineering via BEMS system, in achieving system efficiency. Through the execution of this project, it is identified that the exhibition buildings with 10 hours cooling load, can achieve 7% energy savings. The good result obtained in this project , including the thermal energy storage HVAC system and the heat pump system can be widely adapted to obtain significant energy conservation effect.
4

Validation of a building simulation tool for predictive control in energy management systems

Seeam, Amar Kumar January 2015 (has links)
Buildings are responsible for a significant portion of energy consumption worldwide. Intelligent buildings have been devised as a potential solution, where energy consumption and building use are harmonised. At the heart of the intelligent building is the building energy management system (BEMS), the central platform which manages and coordinates all the building monitoring and control subsystems, such as heating and lighting loads. There is often a disconnect between the BEMS and the building it is installed in, leading to inefficient operation, due to incongruous commissioning of sensors and control systems. In these cases, the BEMS has a lack of knowledge of the building form and function, requiring further complex optimisation, to facilitate efficient all year round operation. Flawed BEMS configurations can then lead to ‘sick buildings’. Recently, building energy performance simulation (BEPS) has been viewed as a conceptual solution to assist in efficient building control. Building energy simulation models offer a virtual environment to test many scenarios of BEMS operation strategies and the ability to quickly evaluate their effects on energy consumption and occupant comfort. Challenges include having an accurate building model, but recent advances in building information modelling (BIM) offer the chance to leverage existing building data, which can be translated into a form understood by the building simulator. This study will address these challenges, by developing and integrating a BEMS, with a BIM for BEPS assisted predictive control, and assessing the outcome and potential of the integration.
5

Gestion énergétique optimisée pour un bâtiment intelligent multi-sources multi-charges : différents principes de validations / Optimized Energy Management for an intelligent building : different principles of validation

Badreddine, Rim 06 July 2012 (has links)
Le bâtiment est un noeud énergétique important et un support idéal pour développer etanalyser les effets d’un système de gestion optimisée d’énergie (SGEB) tant son impactpotentiel sur la demande énergétique globale est important. Cependant, pour que ces objectifssoient atteints, plusieurs verrous doivent être levés. Au-delà des problématiques liées àl’architecture de distribution, aux modèles (y compris ceux relatifs au comportement desusagers), aux outils de dimensionnement, à la formalisation des paramètres, contraintes etcritères, aux systèmes de production et aux modes de connexions au réseau de distribution, lesproblèmes liés à la mise en oeuvre d’un outil de gestion décentralisée et à sa validation sontcentraux centrale. Ces travaux s’inscrivent directement dans cette optique. Ils portent enparticulier sur l’élaboration de modèles énergétiques, de stratégies de gestion d’énergie dansune configuration multi-sources et multi-charges et surtout de mise en oeuvre de méthodes etd’outils de validation au travers de bancs tests variés où certains composants peuvent êtreréels.Ce travail analyse le gestionnaire énergétique « G-homeTech » comprenant plusieursfonctionnalités de gestion testées sur des bancs d’essai virtuels et hybrides qui permettent decombiner à la fois des composants matériels et logiciels dans les simulations. Cela a permisd'insérer des actionneurs communicants pour tester leur pertinence. Les validations menéesmontrent que le gestionnaire énergétique permet l'effacement de pointes de consommation etdes économies sur la facture énergétique globale tout en respectant les contraintes techniqueset réglementaires.Les évènements prédits ne sont pas toujours ceux qui se produisent. Nous avons alorssimulé de telles situations. La radiation solaire et la consommation totale des services noncontrôlables sont différentes de celles prédites. Cette différence a conduit à des dépassementsde puissance électrique souscrite qui a activé le mécanisme de gestion réactive du gestionnaireénergétique. Des ordres de délestage sont alors dynamiquement envoyés à certainséquipements. Ces ordres alimentent directement les modèles des équipements électriques.Selon les importances relatives données au coût et au confort, nous avons montré que legestionnaire énergétique permet de faire des économies substantielles en évitant lesconsommations durant les pics de prix et évitant les dépassements de souscription pareffacement, par modulation du fonctionnement des systèmes de chauffage et par décalage defonctionnement des services temporaires dans les périodes plus intéressante énergétiquement. / The building is an important energy node and an ideal support to develop and analyzethe effects of an Energy Management System (EMS). Because of its potential impact, such amanagement of global energy demand is important. However, to achieve these goals, severallocks must be removed. Beyond issues related to the distribution architecture, to models(including those relating to user behavior), sizing tools, the formalization of parameters,constraints and criteria, production systems and methods of connection to the grid, problemrelated to implementation of decentralized management tool and its validation are central. Mywork is part of this context. It focuses in particular on the development of energy models,strategies for energy management in a multi-source and multi-load configuration, andespecially, the implementation methods and the validation tools through various test bencheswhere some components are real.This paper analyzes the energy manager “G-homeTech” including several managementfeatures tested on virtual and hybrid test benches that combine both hardware and softwarecomponents in the simulations. This has put communicating actuators to test their relevance.The validations show that the energy manager allows the deletion of peak demand andsavings on the overall energy bill while respecting the technical and regulatory constraints.Predicted events are not always those that occur. We then simulated such situations.Solar radiation and the total consumption of uncontrollable services are different from thosepredicted. This difference has led to over-subscribed electric power which has enabled themanagement mechanism of reactive energy manager. Load shedding orders are thendynamically sent to certain equipement. These orders directly supply models of electricalequipment.According to the relative importance given to cost and comfort, we have shown that theenergy manager can make substantial savings avoiding consumption during price peaks andavoiding over-subscription by erasure, by modulation of heating system operation and byshefting the timed service operation in the most interesting periods in energy.
6

The analysis of primary metered half-hourly electricity and gas consumption in municipal buildings

Ferreira, Vasco Guedes January 2009 (has links)
This thesis addressed the need for improved analysis and interpretation of primary meter half-hourly energy consumption data. The current work offers a novel benchmarking technique that was tested for 6 types of municipal buildings. This approach is different from conventional annual benchmarking mainly because it uses electricity and gas data in half-hourly periods, together with outside temperature data. A survey to European local authorities’ metering and monitoring practices was conducted in order to assess municipal energy managers' current procedures and needs in terms of data analysis to assess building energy performance and to identify potential energy saving opportunities. The benchmarking approach was developed considering the energy managers’ needs, but also the state-of the art in terms of building energy monitoring techniques, particularly building energy signatures, and the analysis techniques used on electricity grid demand forecasting. The benchmarking approach is based on the use of a metric composed of several indicators that are related to the load demand shape profile and the building energy signature. The comparison of indicators for buildings of the same type using standard scores identifies uncommon load demand profile characteristics and/or gas dependency on outside temperature in specific buildings. The metric is able to support the identification of potential energy wastage, which is linked to the detection of opportunities to save energy. The benchmarking technique was tested in 81 municipal building owned by Leicester City Council. This methodology can be applied to any non-domestic building equipped with primary meters for registering half-hourly electricity and gas consumption. In theory, this approach can also be applied to residential buildings, and to other short time series data types, for example quarter-hourly or 10 minutes interval data. The main contribution of this thesis is to improve the objectivity of building primary meter half-hourly electricity and gas consumption data analysis and interpretation by using quantitative parameters, instead of subjective visualisation techniques. The interpretation of building consumption data in short time series periods can now be streamlined, automated and perhaps incorporated in existing energy analysis software. This thesis raises questions that can lead to future research projects aiming to improve the metric and also to enlarge the scope of its application to national and European scale, to other building types and to other utilities.

Page generated in 0.0501 seconds