121 |
Étude du couplage entre toucher léger et posture / Investigation on the coupling between light touch and postureVérité, Fabien 12 September 2016 (has links)
Parmi toutes les informations sensorielles que le système nerveux central doit intégrer afin d'établir la commande musculaire permettant d'assurer une position debout, nous nous sommes plus particulièrement intéressés à ce qui est nommé le " toucher léger ". En effet, il a été montré que poser le doigt sur une surface fixe, même légèrement, fournissait une information supplémentaire permettant d'améliorer le contrôle postural. De manière intéressante, lorsque la surface est mise en mouvement, un couplage apparait entre ces mouvements et le balancement postural. Nous avons lors de nos travaux étudié comment cette information était intégrée au contrôle postural. En se basant sur les conclusions de cette étude, nous avons proposé une loi de commande en boucle fermée basée sur la modulation de la vitesse du doigt, qui permet de contrôler la position du centre de pression autour d'une consigne prédéfinie. Nous avons de plus étudié les conditions expérimentales pouvant affecter les performances de cette boucle fermée (instruction, conscience des mouvements du doigt, ajout/retrait d'un sens (la vision), action de rejet volontaire du couplage). Ces études nous permettent de proposer une explication exhaustive des mécanismes expliquant ce phénomène de couplage entre la posture et les mouvements du doigt. La loi de commande proposée permet de guider le centre de pression autour d'une consigne prédéfinie, tout en ne nécessitant ni la coopération ni la concentration des sujets, et présente ainsi un intérêt certain dans les domaines de l'assistance ou de la rééducation. Nous avons donc mené une étude préliminaire en milieu clinique démontrant le potentiel applicatif de cette dernière. / Among the sensory information allowing to control postural balance, we have focused our research on Light Touch. Indeed, it has been shown that lightly touching a motionless surface, provides additional sensory information that improves balance. Interestingly, when the surface is moved slowly, a coupling appears between its motion and postural sway. We have investigated the mechanisms underlying this coupling. Based on our findings, we implemented a closed-loop control law, based on the modulation of the finger velocity, which allows to control the position of the center of pressure around a pre-defined trajectory. We also studied the experimental conditions that could influence the performance of the closed loop (instruction, awareness of finger movements, adding / removing a sensory inputs (vision), voluntary dismissal of action coupling). These studies allow us to offer a comprehensive explanation of the mechanisms underlying this phenomenon of coupling between the posture and movements of the finger. The proposed control law allows to guide the center of pressure around a pre-defined trajectory, without any cooperation from the participants. It could have an interest in the areas of assistance or rehabilitation as a new biofeedback. We therefore conducted a preliminary study in a clinical environment.
|
122 |
Client Experiences of a Brief Heart Rate Variability Biofeedback ProtocolFox, Sheilagh 23 June 2020 (has links)
This study investigated the experiences of clients who completed a brief heart rate variability biofeedback protocol. The purposes of this study were to (1) learn about client experiences of biofeedback because almost no previous research has done so and (2) explore the potential role of common factors in biofeedback. Fifteen clients were interviewed and their data analyzed according to the methods of Consensual Qualitative Research (CQR; Hill, 2012). CQR relies on the use of group consensus to construct representations of participant experiences and categorize themes within the data. The results of the study showed that participants generally experienced the HRVB+ protocol as helpful. They typically expressed that the intervention helped them with their anxiety or stress and that it increased their self-efficacy concerning their ability to manage anxiety or stress. Several domains emerged that captured data about the biofeedback therapist. Though more research is undoubtedly needed, the findings of this study provide some preliminary support for the idea that common factors could play a role in biofeedback interventions.
|
123 |
Rheumatoid Arthritis: A Psychological InterventionMcGraw, Phillip C., 1950- 05 1900 (has links)
A psychological intervention involving relaxation training and biofeedback training for the control of peripheral skin temperature was investigated in this study with 27 female rheumatoid arthritics as participants. Based on analysis of the temperature data, it was concluded that the biofeedback response was not learned. From electromyographic data, it was concluded that participants did learn to relax. The hypothesis that the two treatment components would have beneficial effects on the physical, functional, and psychological aspects of rheumatoid arthritis was answered partially. No differential effects as a function of biofeedback training were found as the data for the temperature increase and temperature decrease groups were statistically combined in multiple analyses of variance for repeated measures. Although no differential effects were obtained, numerous positive changes were found. Correlated with the relaxation training were decreases in reported subjective units of discomfort, percentage of time hurting, percentage of body hurting, and general severity of pain. Improved sleep patterns were reported as was increased performance of activities of daily living. Reductions were also found in psychological tension, and in the amount of time mood was influenced by the disease. Shifts were not found in imagery, locus of control, and other psychological dimensions. Constitutional improvements were also absent.
|
124 |
Examining the Effectiveness of Electromyography Biofeedback at Improving the Upper Trapezius to Serratus Anterior Muscle Activation RatioHolton, Julia Evelyn 01 August 2019 (has links) (PDF)
Purpose: The upper trapezius to serratus anterior muscle activation ratio is essential for optimal shoulder function. An alteration of this ratio, specifically a decrease in upper trapezius and increase in serratus anterior activation, is a main area of focus in shoulder rehabilitation (Kibler, 1998; Paine & Voight, 1993). Electromyography (EMG) biofeedback has been shown to be an effective rehabilitation technique to address many musculoskeletal disorders but there is limited research on the retention of improvements seen with EMG biofeedback (Ma et al., 2011; Lim et al., 2014; Weon, et al., 2011). The purpose of this study was to determine if EMG biofeedback can be used to improve scapular control by decreasing the upper trapezius to serratus anterior activation ratio. A secondary purpose was to determine if these predicted improvements in the ratio can be retained beyond the timeframe in which the treatment is provided. Methods: Twenty college aged (age=21.75±1.77) subjects (10 males, 10 females) volunteered to participate in this study. Subjects were randomized to the exercise only group or EMG biofeedback group. The exercise only group performed three exercises twice a week for four weeks with supervision. The EMG biofeedback group performed the same exercises twice a week for four weeks with the addition of watching EMG biofeedback on a computer monitor with the instructions to decrease the upper trapezius activation and increase the serratus anterior activation by adjusting the corresponding lines on the monitor. The percent maximal voluntary contraction (MVC) for each muscle during each exercise was measured on visit one, visit nine (after the four weeks of practice) and visit ten (after a two-week retention period). The ratio and the individual muscle changes were analyzed using multi-factor ANOVAs against group, exercise, and group by exercise interaction. Results: There was no significant effect of any of the variables on the ratios visit one to visit nine, nor when comparing visit nine to visit ten. The was a significant effect of group on the upper trapezius when comparing visit one to visit nine (p=0.007) with no effect seen comparing visit nine to visit ten. There was also a significant effect of group on the serratus anterior activation for both visit one to visit nine (p=0.000) and visit nine to visit ten (p=0.001). Conclusion: EMG biofeedback did not decrease the upper trapezius to serratus anterior activation ratio, but the individual muscle activation changes indicate that EMG biofeedback is effective at altering muscle activation rates in individual muscles and that those changes can be retained beyond the timeframe of the intervention. Additional research is needed with more subjects and in populations with shoulder pathologies to further investigate the effectiveness of this concept.
|
125 |
Retainer-Free Optopalatographic Device Design and Evaluation as a Feedback Tool in Post-Stroke Speech and Swallowing TherapyWagner, Christoph 21 November 2023 (has links)
Stroke is one of the leading causes of long-term motor disability, including oro-facial impairments which affect speech and swallowing. Over the last decades, rehabilitation programs have evolved from utilizing mainly compensatory measures to focusing on recovering lost function. In the continuing effort to improve recovery, the concept of biofeedback has increasingly been leveraged to enhance self-efficacy, motivation and engagement during training. Although both speech and swallowing disturbances resulting from oro-facial impairments are frequent sequelae of stroke, efforts to develop sensing technologies that provide comprehensive and quantitative feedback on articulator kinematics and kinetics, especially those of the tongue, and specifically during post-stroke speech and swallowing therapy have been sparse. To that end, such a sensing device needs to accurately capture intraoral tongue motion and contact with the hard palate, which can then be translated into an appropriate form of feedback, without affecting tongue motion itself and while still being light-weight and portable. This dissertation proposes the use of an intraoral sensing principle known as optopalatography to provide such feedback while also exploring the design of optopalatographic devices itself for use in dysphagia and dysarthria therapy. Additionally, it presents an alternative means of holding the device in place inside the oral cavity with a newly developed palatal adhesive instead of relying on dental retainers, which previously limited device usage to a single person. The evaluation was performed on the task of automatically classifying different functional tongue exercises from one another with application in dysphagia therapy, whereas a phoneme recognition task was conducted with application in dysarthria therapy. Results on the palatal adhesive suggest that it is indeed a valid alternative to dental retainers when device residence time inside the oral cavity is limited to several tens of minutes per session, which is the case for dysphagia and dysarthria therapy. Functional tongue exercises were classified with approximately 61 % accuracy across subjects, whereas for the phoneme recognition task, tense vowels had the highest recognition rate, followed by lax vowels and consonants. In summary, retainer-free optopalatography has the potential to become a viable method for providing real-time feedback on tongue movements inside the oral cavity, but still requires further improvements as outlined in the remarks on future development.:1 Introduction
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Basics of post-stroke speech and swallowing therapy
2.1 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dysphagia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Treatment rationale and potential of biofeedback . . . . . . . . . . . . . . . . . 13
2.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Tongue motion sensing
3.1 Contact-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Electropalatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Non-contact based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Electromagnetic articulography . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Permanent magnetic articulography . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Optopalatography (related work) . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Electro-optical stomatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Extraoral sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Summary, comparison and conclusion . . . . . . . . . . . . . . . . . . . . . . . 29
4 Fundamentals of optopalatography
4.1 Important radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Radiant flux and radiant intensity . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Monte Carlo ray tracing methods . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 A priori device design consideration . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Optoelectronic components . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Additional electrical components and requirements . . . . . . . . . . . . 43
4.3.3 Intraoral sensor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Intraoral device anchorage
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.1 Mucoadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Considerations for the palatal adhesive . . . . . . . . . . . . . . . . . . . 48
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Polymer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Fabrication method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.4 PEO tablets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.5 Connection to the intraoral sensor’s encapsulation . . . . . . . . . . . . 50
5.2.6 Formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Initial formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Final OPG adhesive formulation . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6 Initial device design with application in dysphagia therapy
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Optode and optical sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.1 Optode and optical sensor evaluation procedure . . . . . . . . . . . . . . 61
6.2.2 Selected optical sensor characterization . . . . . . . . . . . . . . . . . . 62
6.2.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 62
6.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Device design and hardware implementation . . . . . . . . . . . . . . . . . . . . 64
6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.2 Optode placement and circuit board dimensions . . . . . . . . . . . . . 64
6.3.3 Firmware description and measurement cycle . . . . . . . . . . . . . . . 66
6.3.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.5 Fully assembled OPG device . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Evaluation on the gesture recognition task . . . . . . . . . . . . . . . . . . . . . 69
6.4.1 Exercise selection, setup and recording . . . . . . . . . . . . . . . . . . . 69
6.4.2 Data corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.3 Sequence pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.4 Choice of classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.5 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7 Improved device design with application in dysarthria therapy
7.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1.2 General system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.3 Intraoral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.4 Receiver and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 Optode placement and circuit board layout . . . . . . . . . . . . . . . . 87
7.2.2 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.1 Photodiode transient response . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.2 Current source and rise time . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.3 Multiplexer switching speed . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.4 Measurement cycle and firmware implementation . . . . . . . . . . . . . 93
7.3.5 In vitro measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.6 Optode measurement stability . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Evaluation on the phoneme recognition task . . . . . . . . . . . . . . . . . . . . 98
7.4.1 Corpus selection and recording setup . . . . . . . . . . . . . . . . . . . . 98
7.4.2 Annotation and sensor data post-processing . . . . . . . . . . . . . . . . 98
7.4.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 99
7.4.4 Classifier and feature selection . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.5 Evaluation paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.1 Tongue distance curve prediction . . . . . . . . . . . . . . . . . . . . . . 105
7.5.2 Tongue contact patterns and contours . . . . . . . . . . . . . . . . . . . 105
7.5.3 Phoneme recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Conclusion and future work 115
9 Appendix
9.1 Analytical light transport models . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Meshed Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3 Laser safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.4 Current source modulation voltage . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.5 Transimpedance amplifier’s frequency responses . . . . . . . . . . . . . . . . . . 123
9.6 Initial OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . . . 127
9.7 Improved OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . 129
9.8 Test station layout drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Bibliography 152 / Der Schlaganfall ist eine der häufigsten Ursachen für motorische Langzeitbehinderungen, einschließlich solcher im Mund- und Gesichtsbereich, deren Folgen u.a. Sprech- und Schluckprobleme beinhalten, welche sich in den beiden Symptomen Dysarthrie und Dysphagie äußern.
In den letzten Jahrzehnten haben sich Rehabilitationsprogramme für die Behandlung von motorisch ausgeprägten Schlaganfallsymptomatiken substantiell weiterentwickelt. So liegt nicht mehr die reine Kompensation von verlorengegangener motorischer Funktionalität im Vordergrund, sondern deren aktive Wiederherstellung. Dabei hat u.a. die Verwendung von sogenanntem Biofeedback vermehrt Einzug in die Therapie erhalten, um Motivation, Engagement und Selbstwahrnehmung von ansonsten unbewussten Bewegungsabläufen seitens der Patienten zu fördern. Obwohl jedoch Sprech- und Schluckstörungen eine der häufigsten Folgen eines Schlaganfalls darstellen, wird diese Tatsache nicht von der aktuellen Entwicklung neuer Geräte und Messmethoden für quantitatives und umfassendes Biofeedback reflektiert, insbesondere nicht für die explizite Erfassung intraoraler Zungenkinematik und -kinetik und für den Anwendungsfall in der Schlaganfalltherapie. Ein möglicher Grund dafür liegt in den sehr strikten Anforderungen an ein solche Messmethode: Sie muss neben Portabilität idealerweise sowohl den Kontakt zwischen der Zunge und dem Gaumen, als auch die dreidimensionale Bewegung der Zunge in der Mundhöhle erfassen, ohne dabei die Artikulation selbst zu beeinflussen. Um diesen Anforderungen gerecht zu werden, wird in dieser Dissertation das Messprinzip der Optopalatographie untersucht, mit dem Schwerpunkt auf der Anwendung in der Dysarthrie- und Dysphagietherapie. Dies beinhaltet auch die Entwicklung eines entsprechenden Gerätes sowie dessen Befestigungsmethode in der Mundhöhle über ein dediziertes Mundschleimhautadhäsiv.
Letzteres umgeht das bisherige Problem der notwendigen Anpassung eines solchen intraoralen Gerätes an einen einzelnen Nutzer. Für die Anwendung in der Dysphagietherapie erfolgte die Evaluation anhand einer automatischen Erkennung von Mobilisationsübungen der Zunge, welche routinemäßig in der funktionalen Dysphagietherapie durchgeführt werden. Für die Anwendung in der Dysarthrietherapie wurde eine Lauterkennung durchgeführt. Die Resultate
bezüglich der Verwendung des Mundschleimhautadhäsives suggerieren, dass dieses tatsächlich eine valide Alternative zu den bisher verwendeten Techniken zur Befestigung intraoraler Geräte in der Mundhöhle darstellt. Zungenmobilisationsübungen wurden über Probanden hinweg mit einer Rate von 61 % erkannt, wogegen in der Lauterkennung Langvokale die höchste Erkennungsrate erzielten, gefolgt von Kurzvokalen und Konsonanten. Zusammenfassend lässt sich konstatieren, dass das Prinzip der Optopalatographie eine ernstzunehmende Option für die intraorale Erfassung von Zungenbewegungen darstellt, wobei weitere Entwicklungsschritte notwendig sind, welche im Ausblick zusammengefasst sind.:1 Introduction
1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Problem statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Goals and contributions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 Scope and limitations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2 Basics of post-stroke speech and swallowing therapy
2.1 Dysarthria . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.2 Dysphagia . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.3 Treatment rationale and potential of biofeedback . . . . . . . . . . . . . . . . . 13
2.4 Summary and conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
3 Tongue motion sensing
3.1 Contact-based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.1 Electropalatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.1.2 Manometry . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
3.1.3 Capacitive . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
3.2 Non-contact based methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.1 Electromagnetic articulography . . . . . . . . . . . . . . . . . . . . . . . 23
3.2.2 Permanent magnetic articulography . . . . . . . . . . . . . . . . . . . . 24
3.2.3 Optopalatography (related work) . . . . . . . . . . . . . . . . . . . . . . 25
3.3 Electro-optical stomatography . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.4 Extraoral sensing techniques . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.5 Summary, comparison and conclusion . . . . . . . . . . . . . . . . . . . . . . . 29
4 Fundamentals of optopalatography
4.1 Important radiometric quantities . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.1 Solid angle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
4.1.2 Radiant flux and radiant intensity . . . . . . . . . . . . . . . . . . . . . 33
4.1.3 Irradiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.1.4 Radiance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
4.2 Sensing principle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
4.2.1 Analytical models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.2.2 Monte Carlo ray tracing methods . . . . . . . . . . . . . . . . . . . . . . 37
4.2.3 Data-driven models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
4.2.4 Model comparison . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
4.3 A priori device design consideration . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.1 Optoelectronic components . . . . . . . . . . . . . . . . . . . . . . . . . 41
4.3.2 Additional electrical components and requirements . . . . . . . . . . . . 43
4.3.3 Intraoral sensor layout . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5 Intraoral device anchorage
5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.1.1 Mucoadhesion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.1.2 Considerations for the palatal adhesive . . . . . . . . . . . . . . . . . . . 48
5.2 Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.1 Polymer selection . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.2.2 Fabrication method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
5.2.3 Formulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.4 PEO tablets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50
5.2.5 Connection to the intraoral sensor’s encapsulation . . . . . . . . . . . . 50
5.2.6 Formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
5.3 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.1 Initial formulation evaluation . . . . . . . . . . . . . . . . . . . . . . . . 54
5.3.2 Final OPG adhesive formulation . . . . . . . . . . . . . . . . . . . . . . 56
5.4 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6 Initial device design with application in dysphagia therapy
6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
6.2 Optode and optical sensor selection . . . . . . . . . . . . . . . . . . . . . . . . . 60
6.2.1 Optode and optical sensor evaluation procedure . . . . . . . . . . . . . . 61
6.2.2 Selected optical sensor characterization . . . . . . . . . . . . . . . . . . 62
6.2.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 62
6.2.4 Results and discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
6.3 Device design and hardware implementation . . . . . . . . . . . . . . . . . . . . 64
6.3.1 Block diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
6.3.2 Optode placement and circuit board dimensions . . . . . . . . . . . . . 64
6.3.3 Firmware description and measurement cycle . . . . . . . . . . . . . . . 66
6.3.4 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67
6.3.5 Fully assembled OPG device . . . . . . . . . . . . . . . . . . . . . . . . 67
6.4 Evaluation on the gesture recognition task . . . . . . . . . . . . . . . . . . . . . 69
6.4.1 Exercise selection, setup and recording . . . . . . . . . . . . . . . . . . . 69
6.4.2 Data corpus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.3 Sequence pre-processing . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.4.4 Choice of classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71
6.4.5 Training and evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.4.6 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.5 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74
7 Improved device design with application in dysarthria therapy
7.1 Device design . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.1.1 Design considerations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
7.1.2 General system overview . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.3 Intraoral sensor . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81
7.1.4 Receiver and controller . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
7.1.5 Multiplexer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
7.2 Hardware implementation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87
7.2.1 Optode placement and circuit board layout . . . . . . . . . . . . . . . . 87
7.2.2 Encapsulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
7.3 Device characterization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
7.3.1 Photodiode transient response . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.2 Current source and rise time . . . . . . . . . . . . . . . . . . . . . . . . 91
7.3.3 Multiplexer switching speed . . . . . . . . . . . . . . . . . . . . . . . . . 92
7.3.4 Measurement cycle and firmware implementation . . . . . . . . . . . . . 93
7.3.5 In vitro measurement accuracy . . . . . . . . . . . . . . . . . . . . . . . 95
7.3.6 Optode measurement stability . . . . . . . . . . . . . . . . . . . . . . . 96
7.4 Evaluation on the phoneme recognition task . . . . . . . . . . . . . . . . . . . . 98
7.4.1 Corpus selection and recording setup . . . . . . . . . . . . . . . . . . . . 98
7.4.2 Annotation and sensor data post-processing . . . . . . . . . . . . . . . . 98
7.4.3 Mapping from counts to millimeter . . . . . . . . . . . . . . . . . . . . . 99
7.4.4 Classifier and feature selection . . . . . . . . . . . . . . . . . . . . . . . 100
7.4.5 Evaluation paradigms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
7.5 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
7.5.1 Tongue distance curve prediction . . . . . . . . . . . . . . . . . . . . . . 105
7.5.2 Tongue contact patterns and contours . . . . . . . . . . . . . . . . . . . 105
7.5.3 Phoneme recognition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
7.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 108
8 Conclusion and future work 115
9 Appendix
9.1 Analytical light transport models . . . . . . . . . . . . . . . . . . . . . . . . . . 119
9.2 Meshed Monte Carlo method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 120
9.3 Laser safety . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
9.4 Current source modulation voltage . . . . . . . . . . . . . . . . . . . . . . . . . 123
9.5 Transimpedance amplifier’s frequency responses . . . . . . . . . . . . . . . . . . 123
9.6 Initial OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . . . 127
9.7 Improved OPG device’s PCB layout and circuit diagrams . . . . . . . . . . . . 129
9.8 Test station layout drawing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Bibliography 152
|
126 |
Your environment and you: investigating stress triggers and characteristics of the built environmentRuskamp, Parker January 1900 (has links)
Master of Landscape Architecture / Department of Landscape Architecture/Regional and Community Planning / Brent Chamberlain / The physical environment influences mental health and inevitably well-being. While exposure to natural environments shows salubrious health benefits among those who maintain a consistent connection, little is known about how urban environments impact mental health. As urbanization increases worldwide, it is essential to understand the linkages between urbanized environments and public health. This project is guided by the research question: How do different environmental characteristics affect stress-related responses in users?
The study will guide individual subjects (n > 30) to walk a designated route, exposing them to different architectural and environmental elements in downtown Manhattan, Kansas. Physiological biofeedback sensors, including electrodermal activity (EDA) and heart rate sensors, will be used monitor physiological behavioral changes; GPS will provide spatial location; and a GoPro camera will provide real-time first-person experience. Data from these sensors will be integrated into a temporal-spatial analysis to ascertain correlations between architectural and environmental elements in space and associated stress responses. Upon completing the walk, participants will take a brief survey asking for their perceptions, both quantitatively and qualitatively, of the different environments they encounter on the walk.
Raw data collected from the biofeedback devices will be refined and analyzed spatially using GIS mapping software. This will allow us to visualize any associations between design characteristics and the elicited behavioral responses in order to determine the environmental characteristics that may illicit heightened stress responses. Analysis of the survey data will seek to identify any correlations between physiological and perception-based responses.
The intent of the research is to provide a foundation for further studies into how public policy can be better informed and augmented to mitigate potential public health issues caused by urban design. Results will also inform architectural and engineering decision-making processes to further improve urban design by identifying characteristics that may improve or decrease mental health of those living and/or frequenting urban environments.
|
127 |
EFFECTS OF ELECTROMYOGRAPHIC BIOFEEDBACK TRAINING ON LOCUS OF CONTROL AND ANXIETY OF DEAF COLLEGE STUDENTS.SEWARD, KAY MARLENE. January 1983 (has links)
This study investigated the effects of frontalis electromyographic biofeedback training on internality, externality, anxiety, and muscle tension of deaf college students. Student volunteers enrolled at a post-secondary institution providing support services for the deaf were randomly assigned to either an experimental group or a no-treatment control group. The experimental group consisted of 36 subjects (21 males, 15 females) and the control group included 34 subjects (18 males, 16 females). Pretreatment and posttreatment baseline measures of the dependent variables of locus of control, anxiety, and electromyographic (EMG) levels were recorded using the Learning Styles Inventory (National Technical Institute for the Deaf at Rochester Institute of Technology, New York), A Test of Attitudes (F. J. Dowaliby, National Technical Institute for the Deaf at Rochester Institute of Technology, New York), and the Myosone 409 EMG Monitor/Data Processor (Bio-Logic Devices, Inc., Plainview, New York). The experimental group received six half-hour biofeedback sessions during a 3-week treatment phase. The control group was not seen during the treatment phase. Results of analyses of covariance indicated that frontalis electromyographic biofeedback training had no significant effects on internality (F = .009, p = .923), externality (F = .014, p = .905), and anxiety (F = .536, p = .467). Significant differences (F = 3.851, p = .054) were found between experimental and control groups on electromyographic levels. Findings suggest that frontalis electromyographic biofeedback training can be used to reduce muscle tension in a deaf population. This has implications for the prevention and reduction of stress-related disorders. Further research is needed to determine the effects of a longer biofeedback training period on locus of control and anxiety.
|
128 |
THE USE OF IMAGERY AND BIOFEEDBACK IN THE TRAINING OF COUNSELORS AND THERAPISTS.GEFFEN, JOSEPH. January 1982 (has links)
A problem in counselor education is the need to develop methods that would be more directly related to effective outcome in counseling. Researchers have concluded that success in counseling goals is related to clients' increased ability to monitor and modify their own behaviors and that counselor trainees whose education included an emphasis on learning self-regulation skills would be more effective in bringing about greater client self-regulation. Another need is for a theoretical formulation toward the development of more effective instructional methods. The concepts of holism and self-control, which were considered potentially useful within the theoretical system of Adler's Individual Psychology were combined with the methods of biofeedback, imagery, and self-control skills training in the synthesis of a prototypical instructional set. The purpose of the study was to experimentally evaluate this set and the potential validity and utility of the proposed conceptual framework. The hypothesis was that four graduate counselor students would demonstrate improvement in self-regulatory attitudes and behaviors after the treatment condition, which consisted of the instructional set. Electromyographic (EMG) physiological measurements, and scores on the Adult Nowicki-Strickland Internal-External locus-of-control scale were used to assess changes in the subjects' self-regulation, using the single-subject, multiple baseline across-subjects experiment design. Analysis of the results showed that subjects improved in control of muscle activity and in attitudinal direction of internal locus of control. The EMG physiological measurement was considered useful for this type of study, showing an adequate balance of sensitivity and stability. However, the locus-of-control measure was not considered adequate for this population because of an observed "floor" effect. The results were interpreted as having supported the hypothesis and were considered to have established the usefulness of the theoretical framework to generate research and the potential utility of the instructional method in counselor education. Suggestions are made for improvement for the use of EMG scores in the baseline phase and for minimal requirements for an adequate attitudinal scale for further research in this area.
|
129 |
Sensibilisation aux émotions et formation de représentations par biofeedback social - Une révision du modèle et ses implications cliniquesPellerin, Nathalie 11 1900 (has links)
Peu différenciées à la naissance, les émotions deviendraient intelligibles en étant élevées à
la conscience par le développement d’une sensibilité aux sensations internes accompagnant
l’émotion, sa représentation et sa symbolisation (Gergely & Watson, 1996). La théorie du
miroir affectif-parental du biofeedback social de Gergely & Watson (1996), poussée plus
loin par Fonagy, Gergely, Jurist et Target (2002), explique comment une interaction de
biofeedback social complexe, innée, et probablement implicite, s’établit entre parent et
nouveau-né pour aider ce dernier à différencier les somatosensations accompagnant
l’expérience d’une émotion, au travers d’un comportement parental de miroir. Le but de
cette thèse est de réviser cette théorie, et plus particulièrement l’hypothèse du miroir
« marqué » (markedness), qui serait nécessaire pour dissocier le miroir parental du parent,
et permettre l’appropriation de son contenu informationnel par l’enfant. Ce processus de
sensibilisation est conçu comme partie intégrante du travail de symbolisation des émotions
chez les enfants autant que chez les adultes. Cependant, le miroir marqué se manifestant par
une expression exagérée ou « voix de bébé » (motherese) nécessiterait l’utilisation par le
thérapeute d’une « voix de patient » (therapese) (Fonagy, 2010) pour être appliqué à la
psychothérapie adulte, une proposition difficile à soutenir. La révision examine comment la
sensibilisation d’une émotion est accomplie : par un mécanisme d’internalisation
nécessitant un miroir « marqué » ou par un mécanisme de détection de la contingence de
l’enfant. Elle démontre que le détecteur de contingence du nouveau-né (d’un
fonctionnement semblable au système d’entraînement par biofeedback pour adultes) est le
médiateur des fonctions de sensibilisation, de représentation, et de symbolisation de la
ii
sensation d’une émotion par ses processus de détection de la covariance-invariance, de la
maximisation, et du contrôle contingent du miroir parental. Ces processus permettent à
l’émotion de devenir consciente, que le miroir parental soit ‘marqué’ ou non. Le modèle
révisé devient donc applicable à la thérapie des adultes. Une vignette clinique analysée à
l’aide de la perspective du Boston Change Process Study Group sur le changement est
utilisée pour contraster et illustrer les processus de sensibilisation et de symbolisation des
émotions, et leur application à la psychothérapie adulte. Cette thèse considère les
implications cliniques du nouveau modèle, et elle spécule sur les conséquences de
difficultés parentales vis-à-vis de la disponibilité requise par les besoins de biofeedback
social du nouveau-né, et sur les conséquences de traumatismes déconnectant des émotions
déjà sensibilisées de leurs représentations. Finalement, elle suggère que le miroir sensible
des émotions en thérapie puisse remédier à ces deux sortes de difficultés, et que le modèle
puisse être utilisé concurremment à d’autres modèles du changement, en facilitant la
génération d’états internes ressentis et symbolisés pouvant être utilisés pour communiquer
avec soi-même et les autres pour la réparation de difficultés émotionnelles et relationnelles
chez les enfants et les adultes. / Undifferentiated at birth, emotions would become intelligible by being raised to
consciousness through the development of sensitivity to the inner sensations accompanying
the emotion, their representation and symbolization (Gergely & Watson, 1996). The social
biofeedback theory of parental affect-mirroring of Gergely and Watson (1996), furthered by
Fonagy, Gergely, Jurist and Target (2002), explains how these somatosensory signals are so
important that a complex, probably implicit, and possibly innate social biofeedback
interaction exists between caregiver and infant, where the latter learns to differentiate
between emotions through the parent’s mirroring of his emotion expression. The aim of this
thesis is to revise this theory, and more precisely the ‘markedness’ hypothesis, which would
be necessary to dissociate the parental mirroring from the parent and allow appropriation
of its informational content as pertaining to the infant. The process of sensitization to these
sensations is conceived to be integral to the symbolization of emotions in children and
adults. However, ‘motherese’, the singsong prosody of markedness hypothesized to be
necessary to foster successful social biofeedback interactions between caregivers and
infants, requires that therapists use ‘therapese’ in the clinical setting (Fonagy, 2010), a
proposition difficult to reconcile with the therapy of adults. The revision investigates
whether the sensitization and symbolization of an emotion is accomplished through an
internalization mechanism requiring the ‘markedness’ hypothesis, or solely through social
biofeedback mechanisms based on infant contingency detection. It demonstrates that the
infant’s contingency detector (similarly to biofeedback training in adults) mediates the
iv
functions of sensitization, representation, and symbolization of an emotion through its
processes of covariance-invariance detection, maximization, and the contingent control of
the parental mirroring. It allows the emotion to be raised to consciousness, with the help of
the parental mirror, whether it is ‘marked’ or not. The revised model thus becomes
applicable to the therapy of adults. A clinical vignette analyzed with the Boston Change
Process Study Group’s perspective on change is used to contrast and illustrate the processes
of sensitization and representations of emotions, and their application in adult
psychotherapy. The thesis considers the clinical implications of the new model and
speculates on the consequences of parental difficulties with surrendering to the social
biofeedback needs of the infant, and on the consequences of emotional trauma
disconnecting sensitive emotion sensations from their representations. Finally, it suggest
that both kinds of difficulties can be repaired through sensitive mirroring of emotions in
therapy, and that the model might be used concurrently with other models of change, by
facilitating the generation of felt and symbolized inner states that can be used for self and
other communication in the repair of emotional and relational difficulties in children and
adults.
|
130 |
A Biotelemetry Unit for Monitoring Nocturnal BruxismHirsh, S. S. 10 1900 (has links)
International Telemetering Conference Proceedings / October 26-29, 1992 / Town and Country Hotel and Convention Center, San Diego, California / This paper describes a biotelemetric application whereby information of tooth contact pressure from within the mouth of a human subject is transmitted to a bedside receiver where it is processed and used in the biofeedback treatment of nocturnal bruxism (grinding of the teeth). Bruxing information is encoded on a pulse width modulated 313 MHZ carrier. Issues that are addressed include miniaturization of the transmitter, minimization of power requirements, stabilization of carrier frequency, receiver selection, and the various problems associated with getting a radio frequency signal out of the mouth.
|
Page generated in 0.0364 seconds