41 |
Analysis of An Uncertain Volatility Model in the framework of static hedging for different scenariosSdobnova, Alena, Blaszkiewicz, Jakub January 2008 (has links)
<p>In Black-Scholes model, the parameters -a volatility and an interest rate were assumed as constants. In this thesis we concentrate on behaviour of the volatility as</p><p>a function and we find more realistic models for the volatility, which elimate a risk</p><p>connected with behaviour of the volatility of an underlying asset. That is</p><p>the reason why we will study the Uncertain Volatility Model. In Chapter</p><p>1 we will make some theoretical introduction to the Uncertain Volatility Model</p><p>introduced by Avellaneda, Levy and Paras and study how it behaves in the different scenarios. In</p><p>Chapter 2 we choose one of the scenarios. We also introduce the BSB equation</p><p>and try to make some modification to narrow the uncertainty bands using</p><p>the idea of a static hedging. In Chapter 3 we try to construct the proper</p><p>portfolio for the static hedging and compare the theoretical results with the real</p><p>market data from the Stockholm Stock Exchange.</p>
|
42 |
Pricing of European type options for Levy and conditionally Levy type modelsSushko, Stepan January 2008 (has links)
<p>In this thesis we consider two models for the computation of option prices. The first one is a generalization of the Black-Scholes model. In this generalization the volatility Sigma is not a constant. In the simplest case it changes at once at a certain time moment Tau. In some sense this is the conditionally Levy model. For this generalized Black-Scholes model have been theoretically obtained formulas for vanilla Call/Put option prices. Under the assumption of a good prediction of the parameter Sigma the obtained numerical results fit the real dara better than standard Black-Scholes model.</p><p>Second model is an exponential Levy model, where a Levy process is the CGMY process. We use the finite-difference scheme for computations of option prices. As example we consider vanilla Call/Put, Double-Barrier and Up-and-out options. After the estimation of the parameters of the CGMY process by the method of moments we obtain options prices and calculate fitting error. This fitting error for the CGMY model is smaller than for the Black-Scholes model.</p>
|
43 |
Predikterar den implicita volatiliteten den faktiska volatiliteten bättre än den historiska volatiliteten för OMXS30 optioner?Lovenvall, Matylda January 2007 (has links)
<p>Optioner är värdepapper som ger innehavaren rätten, men inte skyldigheten, att sälja eller att köpa den underliggande tillgången inom en given tidsram och till ett givet pris. Vanligen särskiljs det mellan aktieoptioner och indexoptioner. Fokus i uppsatsen ligger på OMXS30 indexoptioner från år 2006. Syftet med uppsatsen är att undersöka om den implicita volatiliteten enligt Black-Scholes formeln bättre predikterar den framtida faktiska volatiliteten än den historiska volatiliteten. I tidigare studier, bland annat i en sammanfattande studie av Figlewski (1997), har resultaten varit tvetydiga. I uppsatsen har jag kunnat konstatera att den implicita och den historiska volatiliteten är relativt jämlika vid prediktering av den faktiska framtida volatiliteten för 2006 års OMXS30 köp- och säljoptioner.</p>
|
44 |
Predikterar den implicita volatiliteten den faktiska volatiliteten bättre än den historiska volatiliteten för OMXS30 optioner?Lovenvall, Matylda January 2007 (has links)
Optioner är värdepapper som ger innehavaren rätten, men inte skyldigheten, att sälja eller att köpa den underliggande tillgången inom en given tidsram och till ett givet pris. Vanligen särskiljs det mellan aktieoptioner och indexoptioner. Fokus i uppsatsen ligger på OMXS30 indexoptioner från år 2006. Syftet med uppsatsen är att undersöka om den implicita volatiliteten enligt Black-Scholes formeln bättre predikterar den framtida faktiska volatiliteten än den historiska volatiliteten. I tidigare studier, bland annat i en sammanfattande studie av Figlewski (1997), har resultaten varit tvetydiga. I uppsatsen har jag kunnat konstatera att den implicita och den historiska volatiliteten är relativt jämlika vid prediktering av den faktiska framtida volatiliteten för 2006 års OMXS30 köp- och säljoptioner.
|
45 |
Analysis of An Uncertain Volatility Model in the framework of static hedging for different scenariosSdobnova, Alena, Blaszkiewicz, Jakub January 2008 (has links)
In Black-Scholes model, the parameters -a volatility and an interest rate were assumed as constants. In this thesis we concentrate on behaviour of the volatility as a function and we find more realistic models for the volatility, which elimate a risk connected with behaviour of the volatility of an underlying asset. That is the reason why we will study the Uncertain Volatility Model. In Chapter 1 we will make some theoretical introduction to the Uncertain Volatility Model introduced by Avellaneda, Levy and Paras and study how it behaves in the different scenarios. In Chapter 2 we choose one of the scenarios. We also introduce the BSB equation and try to make some modification to narrow the uncertainty bands using the idea of a static hedging. In Chapter 3 we try to construct the proper portfolio for the static hedging and compare the theoretical results with the real market data from the Stockholm Stock Exchange.
|
46 |
Pricing of European type options for Levy and conditionally Levy type modelsSushko, Stepan January 2008 (has links)
In this thesis we consider two models for the computation of option prices. The first one is a generalization of the Black-Scholes model. In this generalization the volatility Sigma is not a constant. In the simplest case it changes at once at a certain time moment Tau. In some sense this is the conditionally Levy model. For this generalized Black-Scholes model have been theoretically obtained formulas for vanilla Call/Put option prices. Under the assumption of a good prediction of the parameter Sigma the obtained numerical results fit the real dara better than standard Black-Scholes model. Second model is an exponential Levy model, where a Levy process is the CGMY process. We use the finite-difference scheme for computations of option prices. As example we consider vanilla Call/Put, Double-Barrier and Up-and-out options. After the estimation of the parameters of the CGMY process by the method of moments we obtain options prices and calculate fitting error. This fitting error for the CGMY model is smaller than for the Black-Scholes model.
|
47 |
Operating with Options : A Study of VolatilityBerntsson, Martin January 2006 (has links)
I denna uppsats har jag haft intentionen att försöka förklara vikten av att ha en uppfattning av volatilitet när man handlar med Optioner. Syftet har varit att analysera ifall man kan lära sig från volatilitetens historia, och ifall historisk volatilitet är bättre på att indikera framtida volatilitet än marknadens volatilitet, även kallad den implicita volatiliteten. Syftet har även varit att undersöka ifall det går att göra vinst på Optioner om man har en annan uppfatt-ning om den framtida volailiteten. I uppsatsen har jag använt mig av Black, Scholes and Mertons epokavgörande teori om hur man prissätter Optioner, den så kallade Black-Scholes ekvationen. Från den ekvationen har jag erhålligt volailiteten i OMX index Optioner, den implicita volatiliteten. Black-Scholes ekvationen har likaså använts för att härleda denna faktiska och historiska volaliteten. För att kunna utnyttja en annan uppfattning om den framtida volaliteten än marknadens så har jag presenterat ett antal olika Options strategier. De slutsatser som jag har kunnat dra från år 2001 OMX index Optioner är att den implicita volaliteten verkar vara bättre på att förutspå den faktiska volaliteten än den historiska vola-tiliteten. Ingen av dem är en perfekt indikator på den faktiska volatiliteten men i genomsnitt så skiljer sig den implicita mindre från den faktiska än den historiska. För att sammanfatta volalitetens historia så kan man påstå att volatiliteten som reflekteras i Optionspriset sällan stämmer överens med den faktiska volatiliteten. Ingen sitter på Op-tionsmarknaden med en kristallkula och kan förutspå volatiliteten perfekt hela tiden. Sam-tidigt är det just skillnader i volatilitetstro mellan de olika aktörerna i en Optionsaffär som skapar handel och som gör Optioner till ett så användbart och intressant instrument.
|
48 |
Swaption pricing and isolating volatility exposureForsberg, Tomas January 2011 (has links)
Starting from basic financial mathematics, we cover the mathematics of pricing swaptions, options on interest rate swaps. We then continue to the topic of obtaining an approximately pure volatility exposure. This exposure to volatility, which in practice enables us to trade volatility according to our perceptions of the market, is obtained by buying or selling swaptions and appropriate amounts of the underlying interest rate swap contract. Taking offsetting positions in the underlying contract is called hedging and is covered in depth. We note that hedging can primarily be done in two ways, and discuss the advantages and disadvantages of each of them. After deriving the value formulas for such a swaption strategy aimed at isolating volatility exposure we end with a discussion on the transition from theory to practice.We find that this way of trading volatility is conceptually simple, but that pre-trade profitability analysis is difficult due to the sometimes poor availability of the sophisticated data needed to simulate such a swaption strategy. Despite the possible limitations in the data necessary to translate this theory into an experimental setup, this thesis serves as a good basis for further research on the profitability of a volatility trading strategy using interest rate swaptions.
|
49 |
A Multidimensional Fitted Finite Volume Method for the Black-Scholes Equation Governing Option PricingHung, Chen-Hui 05 July 2004 (has links)
In this paper we present a finite volume method for a two-dimensional Black-Scholes equation with stochastic volatility governing European option pricing. In this work, we first formulate the Black-Scholes equation with a tensor (or matrix) diffusion coefficient into a conversative form. We then present a finite volume method for the resulting equation, based on a fitting technique proposed for a one-dimensional Black-Scholes equation. We show that the method is monotone by proving that the system matrix of the discretized equation is an M-matrix. Numerical experiments, performed to demonstrate the usefulness of the method, will be presented.
|
50 |
Two Studies in the Stability of Taiwan Listed Stock Statistics-The Application of Nonparametric MethodChuang, Ching-Chi 11 July 2002 (has links)
none
|
Page generated in 0.0234 seconds