• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 1
  • Tagged with
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Characterization of Structural and Binding Properties of 4E-BP2

Lukhele, Sabelo 10 July 2013 (has links)
Eukaryotic initiation factor-4E (eIF4E) controls the rate of cap-dependent translation initiation and is in turn exquisitely regulated by 4E-BPs. 4E-BP2 binds eIF4E with the highest affinity and is implicated in cancer, and metabolic and neurological disorders. Herein we use NMR, ITC and fluorescence to characterize 4E-BP2 structural and binding properties. Isolated 4E-BP2 is intrinsically disordered, but possesses some transient secondary structural propensities. eIF4E, however, is folded but has a disordered N-terminus. The eIF4E:4E-BP2 interaction is tight (Kd = 10-9 nM) and involves 4E-BP2 C-terminal and canonical binding regions, and the disordered eIF4E N-terminus. 4E-BP2 remains largely disordered upon binding to eIF4E. Noteworthy, high affinity interactions are not necessarily mediated by static structures, and 4E-BP2 binding is not the simple “disorder-to-order” transition observed in many interactions involving disordered proteins. This study offers molecular insights into 4E-BP2 functionality, and lays a foundation for development of novel therapies for cancer and neurological disorders.
2

Characterization of Structural and Binding Properties of 4E-BP2

Lukhele, Sabelo 10 July 2013 (has links)
Eukaryotic initiation factor-4E (eIF4E) controls the rate of cap-dependent translation initiation and is in turn exquisitely regulated by 4E-BPs. 4E-BP2 binds eIF4E with the highest affinity and is implicated in cancer, and metabolic and neurological disorders. Herein we use NMR, ITC and fluorescence to characterize 4E-BP2 structural and binding properties. Isolated 4E-BP2 is intrinsically disordered, but possesses some transient secondary structural propensities. eIF4E, however, is folded but has a disordered N-terminus. The eIF4E:4E-BP2 interaction is tight (Kd = 10-9 nM) and involves 4E-BP2 C-terminal and canonical binding regions, and the disordered eIF4E N-terminus. 4E-BP2 remains largely disordered upon binding to eIF4E. Noteworthy, high affinity interactions are not necessarily mediated by static structures, and 4E-BP2 binding is not the simple “disorder-to-order” transition observed in many interactions involving disordered proteins. This study offers molecular insights into 4E-BP2 functionality, and lays a foundation for development of novel therapies for cancer and neurological disorders.
3

Der Einfluss endokriner Disruptoren auf das Fettgewebe der Sprague-Dawley-Ratte / The influence of endocrine disruptors on the fat tissue of the Sprague-Dawley-rat

Müller, Matthias 03 July 2008 (has links)
No description available.

Page generated in 0.0198 seconds