• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • 2
  • Tagged with
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Theory and numerical integration of subsurface light transport

Milaenen, David 08 1900 (has links)
En synthèse d’images, reproduire les effets complexes de la lumière sur des matériaux transluminescents, tels que la cire, le marbre ou la peau, contribue grandement au réalisme d’une image. Malheureusement, ce réalisme supplémentaire est couteux en temps de calcul. Les modèles basés sur la théorie de la diffusion visent à réduire ce coût en simulant le comportement physique du transport de la lumière sous surfacique tout en imposant des contraintes de variation sur la lumière incidente et sortante. Une composante importante de ces modèles est leur application à évaluer hiérarchiquement l’intégrale numérique de l’illumination sur la surface d’un objet. Cette thèse révise en premier lieu la littérature actuelle sur la simulation réaliste de la transluminescence, avant d’investiguer plus en profondeur leur application et les extensions des modèles de diffusion en synthèse d’images. Ainsi, nous proposons et évaluons une nouvelle technique d’intégration numérique hiérarchique utilisant une nouvelle analyse fréquentielle de la lumière sortante et incidente pour adapter efficacement le taux d’échantillonnage pendant l’intégration. Nous appliquons cette théorie à plusieurs modèles qui correspondent à l’état de l’art en diffusion, octroyant une amélioration possible à leur efficacité et précision. / In image synthesis, reproducing the complex appearance of objects with subsurface light scattering, such as wax, marble and skin, greatly contributes to the realism of an image. Unfortunately, this added realism comes at a high computational cost. Models based on diffusion theory aim to reduce this computational cost by simulating the physical behaviour of subsurface light scattering while imposing smoothness constraints on the incident and outgoing light fields. An important component of these models is how they are employed to hierarchically evaluate the numerical integral of lighting over the surface of an object. This thesis will first review the existing literature on realistic subsurface lighting simulation, before investigating in more depth the application and extension of modern diffusion models in image synthesis. In doing so, we propose and evaluate a new hierarchical numerical integration technique that uses a novel frequency analysis of the incident and outgoing light fields to reliably adapt the sampling rate during integration. We realize our resulting theory in the context of several state-of-the-art diffusion models, providing a marked improvement in their efficiency and accuracy.
2

Efficient Simulation and Rendering of Sub-surface Scattering

Tsirikoglou, Apostolia January 2013 (has links)
In this thesis, a new improved V-Ray subsurface scattering shader based on the improved diffusion theory is proposed. The new shader supports the better dipole and the quantized diffusion reflectance model for layered translucent materials. These new implemented models build on previous diffusion BSSRDFs and in the case of quantized diffusion uses an extended source function for the material layer. One of the main contributions and significant improvement over V-Ray’s existing subsurface scattering shader is the front and back subsurface scattering separation. This was achieved by dividing the illumination map that is used to calculate each shading’s point color, in two parts: the front part that comes of front lighting and the back one that comes of back lighting. Thus, the subsurface scattering layer can be divided in its consisting parts and each of them can be controlled, weighted and used independently. Finally, the project’s outcome is a new V-Ray material that provides all the above improvements in an intuitive, practical and efficient shader with several intuitive algorithm and light map controls, where artists can create subsurface scattering effects through three subsurface scattering layers.
3

Rendu de matériaux semi-transparents hétérogènes en temps réel

Blanchard, Eric 06 1900 (has links)
On retrouve dans la nature un nombre impressionnant de matériaux semi-transparents tels le marbre, le jade ou la peau, ainsi que plusieurs liquides comme le lait ou les jus. Que ce soit pour le domaine cinématographique ou le divertissement interactif, l'intérêt d'obtenir une image de synthèse de ce type de matériau demeure toujours très important. Bien que plusieurs méthodes arrivent à simuler la diffusion de la lumière de manière convaincante a l'intérieur de matériaux semi-transparents, peu d'entre elles y arrivent de manière interactive. Ce mémoire présente une nouvelle méthode de diffusion de la lumière à l'intérieur d'objets semi-transparents hétérogènes en temps réel. Le coeur de la méthode repose sur une discrétisation du modèle géométrique sous forme de voxels, ceux-ci étant utilisés comme simplification du domaine de diffusion. Notre technique repose sur la résolution de l'équation de diffusion à l'aide de méthodes itératives permettant d'obtenir une simulation rapide et efficace. Notre méthode se démarque principalement par son exécution complètement dynamique ne nécessitant aucun pré-calcul et permettant une déformation complète de la géométrie. / We find in nature several semi-transparent materials such as marble, jade or skin, as well as liquids such as milk or juices. Whether it be for digital movies or video games, having an efficient method to render these materials is an important goal. Although a large body of previous academic work exists in this area, few of these works provide an interactive solution. This thesis presents a new method for simulating light scattering inside heterogeneous semi-transparent materials in real time. The core of our technique relies on a geometric mesh voxelization to simplify the diffusion domain. The diffusion process solves the diffusion equation in order to achieve a fast and efficient simulation. Our method differs mainly from previous approaches by its completely dynamic execution requiring no pre-computations and hence allowing complete deformations of the geometric mesh.
4

Rendu de matériaux semi-transparents hétérogènes en temps réel

Blanchard, Eric 06 1900 (has links)
On retrouve dans la nature un nombre impressionnant de matériaux semi-transparents tels le marbre, le jade ou la peau, ainsi que plusieurs liquides comme le lait ou les jus. Que ce soit pour le domaine cinématographique ou le divertissement interactif, l'intérêt d'obtenir une image de synthèse de ce type de matériau demeure toujours très important. Bien que plusieurs méthodes arrivent à simuler la diffusion de la lumière de manière convaincante a l'intérieur de matériaux semi-transparents, peu d'entre elles y arrivent de manière interactive. Ce mémoire présente une nouvelle méthode de diffusion de la lumière à l'intérieur d'objets semi-transparents hétérogènes en temps réel. Le coeur de la méthode repose sur une discrétisation du modèle géométrique sous forme de voxels, ceux-ci étant utilisés comme simplification du domaine de diffusion. Notre technique repose sur la résolution de l'équation de diffusion à l'aide de méthodes itératives permettant d'obtenir une simulation rapide et efficace. Notre méthode se démarque principalement par son exécution complètement dynamique ne nécessitant aucun pré-calcul et permettant une déformation complète de la géométrie. / We find in nature several semi-transparent materials such as marble, jade or skin, as well as liquids such as milk or juices. Whether it be for digital movies or video games, having an efficient method to render these materials is an important goal. Although a large body of previous academic work exists in this area, few of these works provide an interactive solution. This thesis presents a new method for simulating light scattering inside heterogeneous semi-transparent materials in real time. The core of our technique relies on a geometric mesh voxelization to simplify the diffusion domain. The diffusion process solves the diffusion equation in order to achieve a fast and efficient simulation. Our method differs mainly from previous approaches by its completely dynamic execution requiring no pre-computations and hence allowing complete deformations of the geometric mesh.

Page generated in 0.0175 seconds