• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 34
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 68
  • 36
  • 29
  • 27
  • 22
  • 19
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
31

Exploration of the new horizon of Diels-Adler reactions : asymmetric catalysis /

Huang, Yong, January 2002 (has links)
Thesis (Ph. D.)--University of Chicago, Department of Chemistry, August 2002. / Includes bibliographical references. Also available on the Internet.
32

A route to enhanced intercalation in rubber-silicate nanocomposites

Al-Yamani, Faisal M. January 2005 (has links)
Thesis (M.S.)--University of Akron, Dept. of Polymer Engineering, 2005. / "August, 2005." Title from electronic thesis title page (viewed 11/28/2005) Advisor, Lloyd Goettler; Faculty Reader, Avraam I. Isayev; Department Chair, Sadhan C. Jana; Dean of College, Frank N. Kelley; Dean of Graduate School, George R. Newkome. Includes bibliographical references.
33

Effect of promoter loading for supported silver catalysts used for the epoxidation of 1,3-butadiene with dioxygen

Mueller, Gregory M., January 2004 (has links)
Thesis (M.S.)--University of Missouri-Columbia, 2004. / Typescript. Includes bibliographical references (leaves 61-63). Also available on the Internet.
34

Étude du comportement des systèmes catalytiques métallocène de néodyme / dialkylmagnésium pour la copolymérisation de l'éthylène avec le butadiène et fonctionnalisation des polymères synthétisés / Studies on neodynium metallocene catalytic complexs with dialkylmagnesium for ethylene / butadiene copolymerization and functionnalization of synthetized polymers

Macqueron, Benoit 09 June 2015 (has links)
Résumé confidentiel / Résumé confidentiel
35

Dynamic Modelling of the Emulsion Copolymerization of Styrene/Butadiene / Dynamic Modelling of the Emulsion Copolymerization of SBR

Broadhead, Taras Oscar January 1984 (has links)
<p> A computer model is developed to simulate the emulsion copolymerization of styrene/butadiene in perfectly stirred batch, semi-batch or continuous flow reactors. The model considers free radical initiation by a redox mechanism, micellar particle nucleation, radical concentration as -a function of particle size, radical entry rate and termination rate and diffusion controlled termination and propagation reactions. It predicts conversion, copolymer composition, particle number, number and mass average molecular masses and tri- and tetra-functional branch frequencies. A simple method of estimating the particle size distribution is included in the model. Heat balances over the reactor and cooling jacket are considered and proportional-integra control of the reactor temperature is simulated.</p> <p> The model is used to simulate SBR copolymerization and styrene homopolymerization experimental data from the literature. These simulations tested only certain parts of the model and it is concluded that a more complete verification of the model can only be achieved by running a series of designed experiments. Qualitatively, the molecular mass, particle size distribution and reactor temperature predictions appear to be reasonable. The lack of appropriate temperature dependent rate constants currently limits the molecular mass predictions to isothermal conditions.</p> <p> A comparison of semi-batch operating policies designed to control copolymer composition is presented to illustrate the potential application of the model.</p> / Thesis / Master of Engineering (ME)
36

Electrochemical Characteristics of Conductive Polymer Composite based Supercapacitors

Vaidyanathan, Siddharth 24 September 2012 (has links)
No description available.
37

Frictional vibrations in structural polymers

McCann, Brian P. January 1992 (has links)
M.S.
38

Enhancing performance, durability and service life of industrial rubber products by silica and silane fillers

Wang, Li January 2007 (has links)
Typical rubber compounds used to manufacture industrial products such as tyres, hoses, conveyor belts, acoustics, shock pads, and engine mountings contain up to eight classes of chemical additives· including curing agents, accelerators, activators, processing aids, and antidegradants. The cure systems in these articles often consists of primary and secondary accelerators, primary and secondary activators, and elemental sulphur. Recent legislation impacting upon the working environment, safety and health has imposed a considerable burden on the manufacturers of rubber compounds to meet various obligations. The selection of raw materials and manufacturing processes that do not harm the environment is of great importance. A novel technique for preparing rubber formulations using crosslinking nanofillers such as silanised precipitated silica has been developed in this research. The silica surfaces were pre-treated with bis[3-triethoxysilylpropyl-] tetrasulphane coupling agent (TESPT).· TESPT is a sulphur containing bifunctional organosilane which chemically adheres silica to rubber and also prevents silica from interfering with the reaction mechanism of sulphur-cure systems. The tetrasulphane groups of the TESPT are rubber reactive and react in the presence of accelerator at elevated temperatures, i.e.140 -260°C, with or without elemental sulphur being present, to form crossIinks in rubbers containing chemically active double bonds for example styrene-butadiene rubber (SBR) and polybutadiene rubber (BR) .. SBR and BR rubber compounds containing 60 phr of TESPT pre-treated silica nanofiller were prepared. The silica particles were fully dispersed in the rubber, which was cured primarily by using sulphur in TESPT. The reaction between the tetrasulphane groups of TESPT and the rubbers was optimised by incorporating different accelerators and activators in the rubber. The mechanical properties of the rubber vulcanisates such as hardness, tear strength, tensile strength, elongation at break, stored' energy density at break, abrasion resistance, modulus and cyclic fatigue life were increased significantly when the treated silica filler was added. The need for the accelerator and activator was dependent on the composition of the rubber. Interestingly, the rubbers were fully cured without the use of elemental sulphur, secondary accelerator and secondary activator. As a result, a substantial reduction in the use of the curing chemicals was achieved without compromising the important properties of rubber compounds which are essential for maintaining long life and good performance of industrial rubber products in service. This approach has also helped to improve health and safety within the workplace and minimise harm to the enviromnent.Furthermore, a significant cost saving was achieved after reducing the number of curing chemicals in the rubber.
39

Mechanical and electrical properties of 3D-printed acrylonitrile butadiene styrene composites reinforced with carbon nanomaterials

Weaver, Abigail January 1900 (has links)
Master of Science / Department of Mechanical and Nuclear Engineering / Gurpreet Singh / 3D-printing is a popular manufacturing technique for making complex parts or small quantity batches. Currently, the applications of 3D-printing are limited by the material properties of the printed material. The processing parameters of commonly available 3D printing processes constrain the materials used to a small set of primarily plastic materials, which have relatively low strength and electrical conductivity. Adding filler materials has the potential to improve these properties and expand the applications of 3D printed material. Carbon nanomaterials show promise as filler materials due to their extremely high conductivity, strength, and surface area. In this work, Graphite, Carbon Nanotubes, and Carbon Black (CB) were mixed with raw Acrylonitrile Butadiene Styrene (ABS) pellets. The resulting mixture was extruded to form a composite filament. Tensile test specimens and electrical conductivity specimens were manufactured by Fused Deposition Method (FDM) 3D-printing using this composite filament as the feedstock material. Weight percentages of filler materials were varied from 0-20 wt% to see the effect of increasing filler loading on the composite materials. Additional tensile test specimens were fabricated and post-processed with heat and microwave irradiation in attempt to improve adhesion between layers of the 3D-printed materials. Electrical Impedance Spectroscopy tests on 15 wt% Multiwalled Carbon Nanotube (MWCNT) composite specimens showed an increase in DC electrical conductivity of over 6 orders of magnitude compared to neat ABS samples. This 15 wt% specimen had DC electrical conductivity of 8.74x10−6 S/cm, indicating semi-conducting behavior. MWCNT specimens with under 5 wt% filler loading and Graphite specimens with under 1 wt% filler loading showed strong insulating behavior similar to neat ABS. Tensile tests showed increases in tensile strength at 5 wt% CB and 0.5 wt% MWCNT. Placing the specimens in the oven at 135 °C for an hour caused increased the stiffness of the composite specimens.
40

Degradation of acrylonitrile butadiene rubber and fluoroelastomers in rapeseed biodiesel and hydrogenated vegetable oil

Akhlaghi, Shahin January 2017 (has links)
Biodiesel and hydrotreated vegetable oil (HVO) are currently viewed by the transportation sector as the most viable alternative fuels to replace petroleum-based fuels. The use of biodiesel has, however, been limited by the deteriorative effect of biodiesel on rubber parts in automobile fuel systems. This work therefore aimed at investigating the degradation of acrylonitrile butadiene rubber (NBR) and fluoroelastomers (FKM) on exposure to biodiesel and HVO at different temperatures and oxygen concentrations in an automated ageing equipment and a high-pressure autoclave. The oxidation of biodiesel at 80 °C was promoted by an increase in the oxygen partial pressure, resulting in the formation of larger amounts of hydroperoxides and acids in the fuel. The fatty acid methyl esters of the biodiesel oxidized less at 150 °C on autoclave aging, because the termination reactions between alkyl and alkylperoxyl radicals dominated over the initiation reactions. HVO consists of saturated hydrocarbons, and remained intact during the exposure. The NBR absorbed a large amount of biodiesel due to fuel-driven internal cavitation in the rubber, and the uptake increased with increasing oxygen partial pressure due to the increase in concentration of oxidation products of the biodiesel. The absence of a tan δ peak (dynamical mechanical measurements) of the bound rubber and the appearance of carbon black particles devoid of rubber suggested that the cavitation was caused by the detachment of bound rubber from particle surfaces. A significant decrease in the strain-at-break and in the Payne-effect amplitude of NBR exposed to biodiesel was explained as being due to the damage caused by biodiesel to the rubber-carbon-black network. During the high-temperature autoclave ageing, the NBR swelled less in biodiesel, and showed a small decrease in the strain-at-break due to the cleavage of rubber chains. The degradation of NBR in the absence of carbon black was due only to biodiesel-promoted oxidative crosslinking. The zinc cations released by the dissolution of zinc oxide particles in biodiesel promoted reduction reactions in the acrylonitrile part of the NBR. Heat-treated star-shaped ZnO particles dissolved more slowly in biodiesel than the commercial ZnO nanoparticles due to the elimination of inter-particle porosity by heat treatment. The fuel sorption was hindered in HVO-exposed NBR by the steric constraints of the bulky HVO molecules. The extensibility of NBR decreased only slightly after exposure to HVO, due to the migration of plasticizer from the rubber. The bisphenol-cured FKM co- and terpolymer swelled more than the peroxide-cured GFLT-type FKM in biodiesel due to the chain cleavage caused by the attack of biodiesel on the double bonds formed during the bisphenol curing. The FKM rubbers absorbed biodiesel faster, and to a greater extent, with increasing oxygen concentration. It is suggested that the extensive biodiesel uptake and the decrease in the strain-at-break and Young’s modulus of the FKM terpolymer was due to dehydrofluorination of the rubber by the coordination complexes of biodiesel and magnesium oxide and calcium hydroxide particles. An increase in the CH2-concentration of the extracted FKM rubbers suggested that biodiesel was grafted onto the FKM at the unsaturated sites resulting from dehydrofluorination. / <p>QC 20170227</p>

Page generated in 0.0322 seconds