• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 56
  • 34
  • 11
  • 5
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 1
  • 1
  • Tagged with
  • 136
  • 68
  • 36
  • 29
  • 27
  • 22
  • 19
  • 17
  • 15
  • 15
  • 15
  • 14
  • 14
  • 10
  • 10
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
41

Catalyseurs pour la synthèse du butadiène via le procédé Ostromyslensky développés par Chimie organométallique de surface / Catalysts for butadiene synthesis by Ostromyslensky process developed by surface organometallic chemistry

Gaval, Pooja 12 December 2018 (has links)
Au cours des dernières années, la synthèse ciblée du butadiène en utilisant le bioéthanol a suscité une attention sans précédent en raison de l'intérêt croissant aux matières premières biosourcées ainsi que de la demande croissante en butadiène.Un processus pertinent dans ce contexte est le processus d'Ostromyslensky, qui s’effectue en deux étapes, comprenant la déshydrogénation de l'éthanol en acétaldéhyde en une étape séparée , suivie de la production de butadiène dans la deuxième étape par réaction d'acétaldéhyde avec de l'éthanol supplémentaire. Bien que la viabilité économique et la faisabilité de ce procédé d’éthanol en butadiène (ETB) soient bien établies, il reste de la place pour de meilleures performances catalytiques et une meilleure sélectivité. Dans cet effort, notre objectif était de développer une famille de catalyseurs sur silice à base de silice bien définis, basés sur la chimie organométallique de surface (SOMC) et de les tester lors de la conversion d'EtOH / AA en BD. Le premier ensemble de pré-catalyseurs a été synthétisé en traitant le [(=SiO)2TaHx] précédemment connu avec du N2O en tant qu'oxydant doux. La deuxième famille de catalyseurs a été préparée par calcination de l'espèce alkyl de tantale à 500°C. Les pré-catalyseurs ont été caractérisés par FTIR, RMN SS, UV-vis-DRS, DRX, EXAFS et HR-STEM. On a découvert que les pré-catalyseurs SOMC oxydés au N2O avaient principalement isolé des espèces [(SiO)2Ta (OH)x] peuplant la surface, tandis que la famille des pré-catalyseurs synthétisés par calcination mettait en évidence un mélange d’espèces de surface, y compris des agrégations de type cordes. Les tests catalytiques sur ces catalyseurs ont donné des résultats prometteurs, présentant une catalyse supérieure dans la transformation d'EtOH / AA en BD en termes de sélectivité en BD et de rendement par rapport à l'état de la technique. Outre l'excellente sélectivité, une gamme étroite de distribution du produit et une formation négligeable de coke ont été observées. Les espèces de TaOx isolées sur le pré-catalyseur oxydé au N2O ont montré une activité nettement meilleure et se sont révélées être les sites actifs de cette conversion par rapport à l'agrégation en chaîne de centres de tantale sur le matériau calciné. Sur la base de ces études DRIFT et in situ sur les catalyseurs, un mécanisme préliminaire pour cette conversion a été proposé / In the recent years on-purpose synthesis of butadiene using bioethanol has gained unprecedented attention owing to rise in interest for bio-based feedstock along with the steeply increasing demand for butadiene (BD). In this regard a relevant process is the Ostromyslensky’s two-step process, involving dehydrogenation of ethanol to acetaldehyde in a separate step, followed by butadiene production in the second stage by co-feeding ethanol and acetaldehyde. Although the economic viability and feasibility of this ethanol to butadiene (ETB) process is well established, there is a room for better catalytic performances and selectivity. In this endeavour our aim was to develop a family of well-defined Ta-based silica-supported catalysts through Surface Organometallic Chemistry (SOMC) and test them in the conversion of EtOH/AA to BD. The first set of pre-catalysts was synthesized by treating the previously known [(=SiO)2TaHx] with N2O as mild oxidant. The second family of catalysts was prepared by calcination of the tantalum alkyl species at 500°C. The pre-catalysts were characterized by FTIR, SS NMR, UV-vis-DRS, XRD, EXAFS and HR-STEM. The N2O oxidized SOMC pre-catalysts were found to have mostly isolated [(=SiO)2Ta(OH)x] species populating the surface whereas the family of pre-catalysts synthesized via calcination evidenced a mixture of surface species, including string-like aggregations.Catalytic tests over these catalysts generated promising results exhibiting superior catalysis in the transformation of EtOH/AA to BD in terms of both BD selectivity and yield compared to the state of the art. In addition to the excellent selectivity a narrow range of product distribution and negligible coke formation was observed. Isolated TaOx species on the N2O oxidized pre-catalyst showed markedly better activity and were found to be the active sites in this conversion compared to the string-like aggregation of tantalum centres on the calcined material. Based on this and in-situ DRIFT studies over the catalysts a preliminary mechanism for this conversion was proposed
42

Direct Catalytic Hydrogenation of Unsaturated Diene-Based Polymers in Latex Form

Wei, Zhenli January 2006 (has links)
The direct catalytic hydrogenation of nitrile butadiene rubber (NBR) in latex form was studied as a model system for the development of a new latex hydrogenation process for the modification of unsaturated diene-based polymers. NBR is a synthetic rubber of copolymerized acrylonitrile and butadiene produced in latex form by emulsion polymerization. The catalytic hydrogenation of NBR is an important post-polymerization process resulting in a more stable and tougher derivative, hydrogenated NBR (HNBR), which has been widely used in the automotive and oil drilling industry. The present commercial process involves a number of cumbersome steps to obtain solid NBR from the latex and subsequent dissolution of the solid NBR in a large amount of organic solvent followed by solvent recovery after coagulation of the hydrogenated NBR. Since NBR is produced in latex form, it is very desirable to directly hydrogenate NBR in the latex form which will significantly simplify the hydrogenation process and facilitate subsequent applications. As an economical and environmentally benign alternative to the commercial processes based on the hydrogenation of NBR in organic solution, this direct latex hydrogenation process is of special interest to industry. The objective of this project is to develop an efficient catalytic system in order to realize the direct catalytic hydrogenation of NBR in latex form. OsHCl(CO)(O2)(PCy3)2 was initially used as the catalyst to investigate the possibility of hydrogenation of NBR in latex form and to understand the major factors which affect the hydrogenation operation. It was found that an organic solvent which is capable of dissolving or swelling the NBR was needed in a very small amount for the latex hydrogenation using the Os catalyst, and gel occurred in such a catalytic system during hydrogenation. Wilkinson’s catalyst, RhCl(PPh3)3, was then used for the latex hydrogenation in the presence of a small amount of solvent successfully without gel formation. Further investigation found that Wilkinson’s catalyst has a high activity for NBR latex hydrogenation without the use of any organic solvent. The influences of various operation conditions on hydrogenation rate, such as catalyst and polymer concentrations, latex system composition, agitation, reaction temperature and hydrogen pressure, have been investigated. It was found that the addition of triphenylphosphine (TPP) has a critical effect for the hydrogenation of NBR latex, and the hydrogenation rate was mainly controlled by the amount of catalyst which diffused into the polymer particles. In the presence of TPP, NBR latex can be hydrogenated to more than 95% degree of hydrogenation after about 30 hours at 160oC using Wilkinson’s catalyst with a catalyst to NBR rubber ratio of 1 wt%, without the addition of any organic solvent. The apparent activation energy for such NBR latex hydrogenation over the temperature range of 152oC to 170oC was found to be 57.0 kJ/mol. In the present study, it was also found that there are some impurities within the NBR latex which are detrimental to the hydrogenation reaction and are suspected to be water-soluble surfactant molecules. Deliberately designed solution hydrogenation experiments were conducted to study the impurity issue, and proper latex treatment methods have been found to purify the latex before hydrogenation. To improve the hydrogenation rate and to optimize the latex hydrogenation system, water soluble RhCl(TPPMS)3 catalyst (TPPMS: monosulphonated-triphenylphosphine) was used for the latex hydrogenation of NBR. The latex hydrogenation using the water soluble catalyst with TPP can achieve more than 90% degree of hydrogenation within 20 hours at 160oC. Further experiments using RhCl3 with TPP proved that the water soluble RhCl3 can be directly used as a catalyst precursor to generate the catalytic species in situ for the latex hydrogenation, and a stable NBR latex with 96% degree of hydrogenation can be produced without any gel problem within 19 hours of reaction at 160oC. The catalyst mass transport processes for these Rh based catalysts in the latex system were investigated in order to further optimize the solvent-free latex hydrogenation process. While maintaining the emulsified state of the original latex, the direct catalytic hydrogenation of NBR latex can be carried out efficiently without any cross-linking problem to more than 92% degree of hydrogenation within 8 hours at 160oC. As a result of this research project, new latex hydrogenation technologies were successfully developed to fulfill all major requirements for a solvent-free polymer latex hydrogenation route, which is a significant milestone for the improvement of this polymer modification technology. The finding of TPP’s role as the “catalyst mass transfer promoter” is a breakthrough for the research field related to the hydrogenation of unsaturated diene-based polymers in latex form.
43

Direct Catalytic Hydrogenation of Unsaturated Diene-Based Polymers in Latex Form

Wei, Zhenli January 2006 (has links)
The direct catalytic hydrogenation of nitrile butadiene rubber (NBR) in latex form was studied as a model system for the development of a new latex hydrogenation process for the modification of unsaturated diene-based polymers. NBR is a synthetic rubber of copolymerized acrylonitrile and butadiene produced in latex form by emulsion polymerization. The catalytic hydrogenation of NBR is an important post-polymerization process resulting in a more stable and tougher derivative, hydrogenated NBR (HNBR), which has been widely used in the automotive and oil drilling industry. The present commercial process involves a number of cumbersome steps to obtain solid NBR from the latex and subsequent dissolution of the solid NBR in a large amount of organic solvent followed by solvent recovery after coagulation of the hydrogenated NBR. Since NBR is produced in latex form, it is very desirable to directly hydrogenate NBR in the latex form which will significantly simplify the hydrogenation process and facilitate subsequent applications. As an economical and environmentally benign alternative to the commercial processes based on the hydrogenation of NBR in organic solution, this direct latex hydrogenation process is of special interest to industry. The objective of this project is to develop an efficient catalytic system in order to realize the direct catalytic hydrogenation of NBR in latex form. OsHCl(CO)(O2)(PCy3)2 was initially used as the catalyst to investigate the possibility of hydrogenation of NBR in latex form and to understand the major factors which affect the hydrogenation operation. It was found that an organic solvent which is capable of dissolving or swelling the NBR was needed in a very small amount for the latex hydrogenation using the Os catalyst, and gel occurred in such a catalytic system during hydrogenation. Wilkinson’s catalyst, RhCl(PPh3)3, was then used for the latex hydrogenation in the presence of a small amount of solvent successfully without gel formation. Further investigation found that Wilkinson’s catalyst has a high activity for NBR latex hydrogenation without the use of any organic solvent. The influences of various operation conditions on hydrogenation rate, such as catalyst and polymer concentrations, latex system composition, agitation, reaction temperature and hydrogen pressure, have been investigated. It was found that the addition of triphenylphosphine (TPP) has a critical effect for the hydrogenation of NBR latex, and the hydrogenation rate was mainly controlled by the amount of catalyst which diffused into the polymer particles. In the presence of TPP, NBR latex can be hydrogenated to more than 95% degree of hydrogenation after about 30 hours at 160oC using Wilkinson’s catalyst with a catalyst to NBR rubber ratio of 1 wt%, without the addition of any organic solvent. The apparent activation energy for such NBR latex hydrogenation over the temperature range of 152oC to 170oC was found to be 57.0 kJ/mol. In the present study, it was also found that there are some impurities within the NBR latex which are detrimental to the hydrogenation reaction and are suspected to be water-soluble surfactant molecules. Deliberately designed solution hydrogenation experiments were conducted to study the impurity issue, and proper latex treatment methods have been found to purify the latex before hydrogenation. To improve the hydrogenation rate and to optimize the latex hydrogenation system, water soluble RhCl(TPPMS)3 catalyst (TPPMS: monosulphonated-triphenylphosphine) was used for the latex hydrogenation of NBR. The latex hydrogenation using the water soluble catalyst with TPP can achieve more than 90% degree of hydrogenation within 20 hours at 160oC. Further experiments using RhCl3 with TPP proved that the water soluble RhCl3 can be directly used as a catalyst precursor to generate the catalytic species in situ for the latex hydrogenation, and a stable NBR latex with 96% degree of hydrogenation can be produced without any gel problem within 19 hours of reaction at 160oC. The catalyst mass transport processes for these Rh based catalysts in the latex system were investigated in order to further optimize the solvent-free latex hydrogenation process. While maintaining the emulsified state of the original latex, the direct catalytic hydrogenation of NBR latex can be carried out efficiently without any cross-linking problem to more than 92% degree of hydrogenation within 8 hours at 160oC. As a result of this research project, new latex hydrogenation technologies were successfully developed to fulfill all major requirements for a solvent-free polymer latex hydrogenation route, which is a significant milestone for the improvement of this polymer modification technology. The finding of TPP’s role as the “catalyst mass transfer promoter” is a breakthrough for the research field related to the hydrogenation of unsaturated diene-based polymers in latex form.
44

Dynamic Modelling of Emulsion Polymerization for the Continuous Production of Nitrile Rubber

Washington, Ian David 20 November 2008 (has links)
Commodity and specialty-grade rubbers, such as styrene-butadiene (SBR) or nitrile-butadiene (NBR), are industrially produced in large trains of continuous reactors using an emulsion polymerization process. Both SBR and NBR systems are largely unstudied. Furthermore, the studies that have been published on NBR have been typically limited to issues concerning the characteristics of the product behaviour (i.e. oil/fuel resistance, tensile strength, hardness, compression set). In this work a detailed mathematical model has been developed in order to simulate the industrial production of NBR via emulsion copolymerization of acrylonitrile (AN) and butadiene (Bd) in batch, continuous and trains of continuous reactors. Model predictions include monomer conversion, polymerization rate, copolymer composition, number- and weight-average molecular weights, tri- and tetra-functional branching frequencies, and the number and average size of polymer latex particles. NBR is typically produced at low temperatures (5 to 10 degrees C) using a redox initiation system to generate free radicals. The system is typically composed of three phases, water, polymer particles, and monomer. Surfactants and electrolytes are used to stabilize the particle and monomer phases as polymerization proceeds. Of particular industrial importance, in today's world of tailor-made products, is detailed control over the polymerization reaction. Such control requires a deep understanding of the influence of various reactant feed rates and reactor operating conditions on the process response. In particular, policies to minimize copolymer composition drift and to control molecular weight, polydispersity and chain branching at desirable levels. The model is cast in a dynamic form using ordinary differential equations to describe the change of each species, the average number of particles, total average polymer volume, and the first three leading moments of the molecular weight distribution. With a multiphase system it is necessary to determine the concentration of each component in each phase. For this, a constant partition coefficient approach was adopted, as opposed to a purely thermodynamic approach. Particle generation was modelled considering both micellar and homogeneous mechanisms. Model parameters were obtained from the open literature or arrived at after sensitivity analysis. Simulations starting the reactors full of water, feeding all ingredients to the first reactor and using an average residence time of 60 minutes revealed considerable copolymer drift starting in the forth reactor (33% conversion), and heightened molecular weights and chain branching once the monomer phase disappeared (50% conversion). Further simulations revealed that both copolymer drift and the growth of molecular weight and branching could be controlled through additional feed streams of AN and chain transfer agent to downstream reactors. Furthermore, polymer productivity could be increased by appropriately splitting the total monomer feed between the first couple of reactors in the train.
45

Dynamic Modelling of Emulsion Polymerization for the Continuous Production of Nitrile Rubber

Washington, Ian David 20 November 2008 (has links)
Commodity and specialty-grade rubbers, such as styrene-butadiene (SBR) or nitrile-butadiene (NBR), are industrially produced in large trains of continuous reactors using an emulsion polymerization process. Both SBR and NBR systems are largely unstudied. Furthermore, the studies that have been published on NBR have been typically limited to issues concerning the characteristics of the product behaviour (i.e. oil/fuel resistance, tensile strength, hardness, compression set). In this work a detailed mathematical model has been developed in order to simulate the industrial production of NBR via emulsion copolymerization of acrylonitrile (AN) and butadiene (Bd) in batch, continuous and trains of continuous reactors. Model predictions include monomer conversion, polymerization rate, copolymer composition, number- and weight-average molecular weights, tri- and tetra-functional branching frequencies, and the number and average size of polymer latex particles. NBR is typically produced at low temperatures (5 to 10 degrees C) using a redox initiation system to generate free radicals. The system is typically composed of three phases, water, polymer particles, and monomer. Surfactants and electrolytes are used to stabilize the particle and monomer phases as polymerization proceeds. Of particular industrial importance, in today's world of tailor-made products, is detailed control over the polymerization reaction. Such control requires a deep understanding of the influence of various reactant feed rates and reactor operating conditions on the process response. In particular, policies to minimize copolymer composition drift and to control molecular weight, polydispersity and chain branching at desirable levels. The model is cast in a dynamic form using ordinary differential equations to describe the change of each species, the average number of particles, total average polymer volume, and the first three leading moments of the molecular weight distribution. With a multiphase system it is necessary to determine the concentration of each component in each phase. For this, a constant partition coefficient approach was adopted, as opposed to a purely thermodynamic approach. Particle generation was modelled considering both micellar and homogeneous mechanisms. Model parameters were obtained from the open literature or arrived at after sensitivity analysis. Simulations starting the reactors full of water, feeding all ingredients to the first reactor and using an average residence time of 60 minutes revealed considerable copolymer drift starting in the forth reactor (33% conversion), and heightened molecular weights and chain branching once the monomer phase disappeared (50% conversion). Further simulations revealed that both copolymer drift and the growth of molecular weight and branching could be controlled through additional feed streams of AN and chain transfer agent to downstream reactors. Furthermore, polymer productivity could be increased by appropriately splitting the total monomer feed between the first couple of reactors in the train.
46

Evaluation of a solid phase microextraction method for community-based monitoring of 1,3-butadiene and benzene in Houston, Texas.

Broyles, Gregory M. Symanski, Elaine, Stock, Thomas H. Maxwell, Taylor J. January 2009 (has links)
Source: Masters Abstracts International, Volume: 47-06, page: 3475. Advisers: Elaine Symanski; Thomas H. Stock. Includes bibliographical references
47

Effects of Low Temperatures, Repetitive Stresses and Chemical Aging on Thermal and Fatigue Cracking in Asphalt Cement Pavements on Highway 417

AGBOVI, HENRY KWAME 29 February 2012 (has links)
Thermal and fatigue cracking are pavement distresses that deteriorate asphalt pavements in Canada. However, the current AASHTO M320 standard specification protocol does not give satisfactory correlation between the properties measured in the laboratory to thermal and fatigue cracking performance of the asphalt in service. This thesis is aimed at validating the newly developed MTO LS-299 and LS-308 specification test methods for predicting pavement distress. A secondary objective is to determine how well laboratory-aged and field-aged binders correlate with each other in terms of their chemical and physical properties. Chemical testing using infrared (IR) spectroscopy and X-ray fluorescence (XRF), as well as physical and mechanical testing using the regular bending beam rheometer (BBR), extended BBR (eBBR), dynamic shear rheometer (DSR), and double edge notched tension (DENT) tests were performed on laboratory-aged and recovered binders from Highway 417. Asphalt cements with significant amounts of waste engine oil residues as determined by XRF data were found to have cracked severely due to their high tendency for chemical aging. Western Canadian binders modified with styrene-butadiene-styrene polymer showed low affinity for both chemical and physical aging as determined from their carbonyl indices. Asphalt binders with smaller paraffinic structures exhibited insignificant pavement deterioration while the opposite occurred to those with low aromatic indices according to their IR data. The DSR data show that chemical aging occurs much faster in the laboratory-aged binders than the field-aged binders. The DENT test is able to separate superior performing binders from inferior ones with 86% accuracy according to their CTOD data. The regular BBR gave poor correlation between the laboratory test methods and the performance of the pavements. Good correlation exists between the laboratory test methods and the performance of the pavements in service according to the eBBR data. Pavements without any cracks showed lower grade losses, while pavements with severe thermal cracking recorded higher grade losses after three days of conditioning prior to testing. The study has shown that the eBBR and DENT tests are better tools for predicting pavement performance and provide good specification tests for the control of thermal and fatigue cracking in modern pavements. / Thesis (Master, Chemistry) -- Queen's University, 2012-02-28 13:16:02.222
48

Spectroscopic Studies of Pyridine and its Isotopomer, 2-Fluoro- and 3-Fluoropyridine, 1,3-Butadiene and Its Isotopomers

Boopalachandran, Praveenkumar 2011 December 1900 (has links)
The infrared, Raman and ultraviolet spectra of pyridine-d0 and pyridine-d5 were recorded and assigned with a focus on the low-frequency vibrational modes in the S1(n,pi*) electronic excited state. An energy map for the low-frequency modes was constructed and the data for the v18 mode allowed a highly anharmonic one-dimensional potential energy function to be determined for the S1 excited state. In this S1(n,pi*) state, pyridine is quasi-planar and very floppy with a barrier to planarity of 3 cm^-1. The infrared, Raman and ultraviolet spectra of 2-fluoropyridine (2FPy) and 3-fluoropyridine (3FPy) have been collected and assigned. For 2FPy about 150 bands were observed for the transitions to the vibronic levels of the S(pi, pi*) state at 38,030.4 cm^-1. For 3FPy more than a hundred absorption bands associated with the S(n,pi*) state at 35,051.7 cm^-1 and about forty broad bands associated with the S(pi, pi*) state at 37,339 cm^-1 were observed. The experimental work was complemented by ab initio calculations and these also provided calculated structures for 2FPy, 3FPy, and pyridine. They showed that the fluorine atom on the ring participates in the pi bonding. The gas-phase Raman spectra of 1,3-butadiene and its 2,3-d2, 1,1,4,4-d4, and d6 isotopomers have been recorded with high sensitivity in the region below 350 cm-1, in order to investigate the internal rotation (torsional) vibration. The data for all the isotopomers were then fit using a one-dimensional potential energy function of the form V = (1/2)Sigma(Vn(1-cos (phi))). The energy difference between trans and gauche forms was determined to be about 1030 cm^-1 (2.94 kcal/mol), and the barrier between the two equivalent gauche forms to be about 180 cm^-1 (0.51 kcal/mol), which agrees well with high-level ab initio calculations. The results from an alternative set of assignments also fits the data quite well are also presented. Combination and hot band series involving the v13 torsional vibration of the trans rotamer were observed for each of the butadiene isotopomers. In addition, the high signal to noise of the Raman spectra made it possible to detect several dozen bands of the gauche rotor which makes up only about 2% of the molecules at ambient temperature.
49

Preparation of Thermoplastic Vulcanizates from Devulcanized Rubber and Polypropylene

Mutyala, Prashant 06 November 2014 (has links)
One of the current problems faced by mankind is the problem of safe disposal of waste rubber. Statistics show that the number of waste tires is continuously increasing at a very rapid rate. Since rubber materials do not decompose easily (due to their crosslinked structure), they end up being a serious ???environmental problem???. An intuitive solution to prevent the accumulation of the scrap tires is to continuously reuse them. A new patented reclamation method was discovered in our laboratory, which makes use of a twin screw extruder (TSE) in order to produce reclaimed rubber (referred as devulcanized rubber (DR) from here on) of very high quality. Also, this method has proven to be more economical than other commercial reclaiming methods. Products made solely from a reclaimed material face challenges from those made by virgin materials because of relatively poor properties. However, the striking advantage of using reclaimed rubbers is the cost reduction. Hence, it is important to work on establishing methods by which these reclaimed rubbers could be efficiently used and incorporated into present day products. The deterioration of properties could be minimized by blending them with varying amounts of other materials. A possibility in this direction is manufacturing of thermoplastic vulcanizates (TPVs) using reclaimed rubber and general purpose thermoplastics. In accordance with this idea, the focus of this research is to prepare DR and polypropylene (PP) based TPVs. DR is unique as the rubber itself consists of two phases- one phase consisting of uncrosslinked (including devulcanized rubber molecules), and the other phase consisting of crosslinked (un-devulcanized) rubber. These un-devulcanized crumbs act as stress concentrators because they do not break-up easily, and lead to poor physical properties. Hence, this project tries to find out ways to increase the interfacial adhesion between the rubber and PP by using reactive and non-reactive techniques. Preliminary experiments were carried out in a batch mixer to compare DR and rubber crumb (CR). DR based TPVs showed better properties than CR based TPVs, however, the properties were not useful for commercial applications. Sulphur based dynamic vulcanization was studied in a batch mixer and found to be not effective in improving the properties of DR based blends. On the other hand, DCP/ sulphur based curing system was found to show significant improvement in properties. Therefore, DCP/sulphur based curing package was studied in detail on the blends consisting of DR and PP. The optimum ratio of DCP/sulphur was found to vary depending on the ratio of DR/PP. A hypothesis regarding the mechanism of DCP/sulphur curing has been proposed, which seem to correlate well with the experimental results observed. Additionally, it was determined that DR prepared from tire rubber (DRT) performed better than DR prepared from waste EPDM (DRE) for the curing system used. Accordingly, experiments on a TSE were carried out using DRT and a combination of compatibilizing resins and curatives. This combination showed a drastic improvement in blends properties and once again the optimum ratio of compatibilizing resins seemed to depend on the ratio of DRT/PP. As a result of the work, successful strategies based on reactive compatibilization techniques were developed in order to prepare useful TPVs having up to 70% DR. A series of compatibilization techniques has been evaluated using design of experiments and various characterization techniques such as mechanical tests, scanning electron microscopy, thermal analysis and crosslink density measurements. This led to the development of a formulation, which could improve the blend properties significantly. A tensile strength of around 10 MPa and an elongation-at-break of 150-180 % could be achieved for devulcanized rubber (70%) based TPVs, which has broadened the scope for its commercial applications. In addition to that, the process was established on a TSE that has enabled a continuous and steady production of these TPVs with reasonable throughputs.
50

Biochemical Dechlorination of Hexachloro-1,3-butadiene

D.James@murdoch.edu.au, Donny Lawrence James January 2010 (has links)
Hexachloro-1,3-butadiene (HCBD) is a toxic aliphatic chlorinated hydrocarbon which is widely used as a fungicide, herbicide and heat transformer fluid. HCBD is resistant to microbial degradation and, therefore, persists in aquatic and soil environments worldwide. In this thesis, the ability of non-specific bacteria from various sources to dechlorinate HCBD in the presence of either acetate or lactate (as an electron donor) and cyanocobalamin (as an electron shuttle) under different conditions was investigated. Cultivating specific populations to reduce cyanocobalamin as a method to increase HCBD dechlorination rate was investigated. Also, the factors responsible for HCBD dechlorination and the stalling of dechlorination were studied. Lastly, redox potential measurement during the microbial reductive dechlorination of HCBD for online detection of ongoing dechlorination was evaluated. Findings from the Project „« Non-specific bacteria from activated sludge, anaerobic digested effluent from municipal waste, piggery waste and sheep rumen content are able to dechlorinate HCBD in the presence of cyanocobalamin to chlorine-free C4 gases in a biochemical reaction. „« Dechlorination was equated to the formation of completely dechlorinated end-products from HCBD dechlorination. „« Methanogens were found to be involved in HCBD dechlorination. „« Mediators rather than specific bacteria were responsible for the fast dechlorination rates. Results suggest that activated sludge may release synthesized mediators into the supernatant to enable enhanced HCBD dechlorination. „« HCBD dechlorination can be monitored using oxidation reduction potential (ORP). ORP has an effect on HCBD dechlorination rate. Scientific Significance/Novelty The most significant finding from this research is that it demonstrates chlorine-free end-products in contrast with other studies in literature (Booker and Pavlosthasis, 2000; Bosma et al., 1994) where dechlorination was equated with disappearance of HCBD into bacterial biomass and the detection of partially dechlorinated gases such as trichlorobutadiene. It also shows that, in contrast to literature where specific bacteria (i.e., pure strains/cultures) were commonly used for the dechlorination of polychlorinated hydrocarbons, results from this thesis show that non-specific bacteria were able to dechlorinate HCBD in the presence of cyanocobalamin at ratesƒx sufficiently high to be considered for bioremediation projects. Moreover, results demonstrate that ORP can be used to monitor HCBD dechlorination.

Page generated in 0.0293 seconds