• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 18
  • 7
  • Tagged with
  • 92
  • 92
  • 92
  • 32
  • 31
  • 30
  • 28
  • 26
  • 26
  • 17
  • 15
  • 15
  • 15
  • 14
  • 13
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
91

Caspase-8 and RIP Kinases Regulate Bacteria-Induced Innate Immune Responses and Cell Death: A Dissertation

Weng, Dan 07 July 2014 (has links)
Yersinia pestis (Y. pestis), as the causative agent of plague, has caused deaths estimated to more than 200 million people in three historical plague pandemics, including the infamous Black Death in medieval Europe. Although infection with Yersinia pestis can mostly be limited by antibiotics and only 2000-5000 cases are observed worldwide each year, this bacterium is still a concern for bioterrorism and recognized as a category A select agent by the Centers for Disease Control and Prevention (CDC). The investigation into the host-pathogen interactions during Y. pestis infection is important to advance and broaden our knowledge about plague pathogenesis for the development of better vaccines and treatments. Y. pestis is an expert at evading innate immune surveillance through multiple strategies, several mediated by its type three secretion system (T3SS). It is known that the bacterium induces rapid and robust cell death in host macrophages and dendritic cells. Although the T3SS effector YopJ has been determined to be the factor inducing cytotoxicity, the specific host cellular pathways which are targeted by YopJ and responsible for cell death remain poorly defined. This thesis research has established the critical roles of caspase-8 and RIP kinases in Y. pestis-induced macrophage cell death. Y. pestis-induced cytotoxicity is completely inhibited in RIP1-/- or RIP3-/-caspase-8-/- macrophages or by specific chemical inhibitors. Strikingly, this work also indicates that macrophages deficient in either RIP1, or caspase-8 and RIP3, have significantly reduced infection-induced production of IL-1β, IL-18, TNFα and IL-6 cytokines; impaired activation of NF-κB signaling pathway and greatly compromised caspase-1 processing; all of which are critical for innate immune responses and contribute to fight against pathogen infection. Y. pestis infection causes severe and often rapid fatal disease before the development of adaptive immunity to the V bacterium, thus the innate immune responses are critical to control Y. pestis infection. Our group has previously established the important roles of key molecules of the innate immune system: TLR4, MyD88, NLRP12, NLRP3, IL-18 and IL-1β, in host responses against Y. pestis and attenuated strains. Yersinia has proven to be a good model for evaluating the innate immune responses during bacterial infection. Using this model, the role of caspase-8 and RIP3 in counteracting bacterial infection has been determined in this thesis work. Mice deficient in caspase-8 and RIP3 are very susceptible to Y. pestis infection and display reduced levels of pro-inflammatory cytokines in spleen and serum, and decreased myeloid cell death. Thus, both in vitro and in vivo results indicate that caspase-8 and RIP kinases are key regulators of macrophage cell death, NF-κB and caspase-1 activation in Yersinia infection. This thesis work defines novel roles for caspase-8 and RIP kinases as the central components in innate immune responses against Y. pestis infection, and provides further insights to the host-pathogen interaction during bacterial challenge.
92

Comparison of the Humoral Immune Response following Both Bacterial Challenge and RNAi of Major Factors on Proliferation of Bartonella quintana in the Human Louse

Zina, Jake 28 October 2022 (has links) (PDF)
Human body lice, Pediculus humanus humanus, and head lice, Pediculus humanus capitis, have been hematophagous ectoparasites of humans for thousands of years. Despite being ecotypes, only body lice are known to transmit bacterial diseases to humans, and it appears that lower humoral and cellular immune responses allow body lice to possess a higher vector competence. We previously observed that the transcription level of the defensin 1 gene was up-regulated only in head lice following oral challenge of Bartonella quintana, a causative agent of trench fever, and also that body lice excreted more viable B. quintana in their feces. In this study, we first investigated this differential immune response by performing RNAi to knockdown defensin 1 by dsRNA injection. B. quintana was orally infected 72 h after injection and proliferation was compared at 2 hours (day 0) and day 4 post-infection. At day 0, bacterial cell numbers increased 1.5-fold in defensin 1 (Def1(-)) knocked down head lice compared with non-knocked down, pQE30-dsRNA injected, head lice control. At day 4, Def1(-) knocked down head lice had 2.55-fold more bacterial cells than control head lice and 1.65-fold greater than body lice, indicating that defensin 1 was active in reducing B. quintana cell number in non-knocked down head lice. Second, the levels of cytotoxic reactive oxygen species (ROS) generated by the epithelial cells of the alimentary tract were measured using two general indictors of ROS in both body and head lice at day 1 and day 4 following B. quintana challenge. Challenged body lice showed a 42% and 34% increase in ROS, whereas head lice showed a 70% and 22% increase at day 1 using CM-H2DCFDA and HPF as general indicators, respectively. On day 4, all challenged lice showed similar ROS levels except for body lice which maintained their ROS levels (40% increase using CM-H2DCFDA). Head lice are likely to have multiple immune and/or non-immune factors that suppress B. quintana proliferation, and the production of sustained ROS levels and/or the single knockdown of Defensin 1 is not enough to increase B. quintana proliferation in head lice to that seen in body lice.

Page generated in 0.1625 seconds