• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Automated Gravel Road Condition Assessment : A Case Study of Assessing Loose Gravel using Audio Data

Saeed, Nausheen January 2021 (has links)
Gravel roads connect sparse populations and provide highways for agriculture and the transport of forest goods. Gravel roads are an economical choice where traffic volume is low. In Sweden, 21% of all public roads are state-owned gravel roads, covering over 20,200 km. In addition, there are some 74,000 km of gravel roads and 210,000 km of forest roads that are owned by the private sector. The Swedish Transport Administration (Trafikverket) rates the condition of gravel roads according to the severity of irregularities (e.g. corrugations and potholes), dust, loose gravel, and gravel cross-sections. This assessment is carried out during the summertime when roads are free of snow. One of the essential parameters for gravel road assessment is loose gravel. Loose gravel can cause a tire to slip, leading to a loss of driver control.  Assessment of gravel roads is carried out subjectively by taking images of road sections and adding some textual notes. A cost-effective, intelligent, and objective method for road assessment is lacking. Expensive methods, such as laser profiler trucks, are available and can offer road profiling with high accuracy. These methods are not applied to gravel roads, however, because of the need to maintain cost-efficiency.  In this thesis, we explored the idea that, in addition to machine vision, we could also use machine hearing to classify the condition of gravel roads in relation to loose gravel. Several suitable classical supervised learning and convolutional neural networks (CNN) were tested. When people drive on gravel roads, they can make sense of the road condition by listening to the gravel hitting the bottom of the car. The more we hear gravel hitting the bottom of the car, the more we can sense that there is a lot of loose gravel and, therefore, the road might be in a bad condition. Based on this idea, we hypothesized that machines could also undertake such a classification when trained with labeled sound data. Machines can identify gravel and non-gravel sounds. In this thesis, we used traditional machine learning algorithms, such as support vector machines (SVM), decision trees, and ensemble classification methods. We also explored CNN for classifying spectrograms of audio sounds and images in gravel roads. Both supervised learning and CNN were used, and results were compared for this study. In classical algorithms, when compared with other classifiers, ensemble bagged tree (EBT)-based classifiers performed best for classifying gravel and non-gravel sounds. EBT performance is also useful in reducing the misclassification of non-gravel sounds. The use of CNN also showed a 97.91% accuracy rate. Using CNN makes the classification process more intuitive because the network architecture takes responsibility for selecting the relevant training features. Furthermore, the classification results can be visualized on road maps, which can help road monitoring agencies assess road conditions and schedule maintenance activities for a particular road. / <p>Due to unforeseen circumstances the seminar was postponed from May 7 to 28, as duly stated in the new posting page.</p>
2

Automatic loose gravel condition detection using acoustic observations

Kyros, Gionian, Myrén, Elias January 2022 (has links)
Evaluation of the road's condition and state is essential for its upkeep, especially when discussing gravel roads, for the following reasons, among other. When loose gravel is not adequately maintained, it can pose a hazard to drivers, who can lose control of their vehicle and cause accidents. Current maintenance procedures are either laborious or time-consuming. Road agencies and institutions are on the lookout for more effective techniques. This study seeks to establish an automatic method for estimating loose gravel using acoustic observation. On gravelroads, recordings from a car's interior were evaluated and matched to the road's state. The first strategy examined road sections with a four-tier (multiclass) manual classification, based on their perceived condition of loose gravel, in accordance with the Swedish road administration authority’s guidelines. The second, examined two tier (binary) manual classification, distinguishing between roads with low and high maintenance needs. Sound features were extracted and processed for subsequentanalysis. Several supervised machine learning methods and algorithms, combined with selected data preprocessing strategies, were deployed. The performance of each strategy and model is determined by assessing and evaluating their classification accuracy along with other performance metrics. The SVM classifier had the best performance in classifying both multiclass as well as binary gravel road conditions. SVM achieved an accuracy of 57.8% when classifying on a four-tier scale and an accuracy of 82% when classifying on a two-tier scale. These results indicate some merits of using audio features as predictive features in the automatic classification of loose gravel conditions on gravel roads.
3

A Comparison of Classification Methods in Predicting the Presence of DNA Profiles in Sexual Assault Kits

Heckman, Derek J. 11 January 2018 (has links)
No description available.
4

Radar based tank level measurement using machine learning : Agricultural machines / Nivåmätning av tank med radar sensorer och maskininlärning

Thorén, Daniel January 2021 (has links)
Agriculture is becoming more dependent on computerized solutions to make thefarmer’s job easier. The big step that many companies are working towards is fullyautonomous vehicles that work the fields. To that end, the equipment fitted to saidvehicles must also adapt and become autonomous. Making this equipment autonomoustakes many incremental steps, one of which is developing an accurate and reliable tanklevel measurement system. In this thesis, a system for tank level measurement in a seedplanting machine is evaluated. Traditional systems use load cells to measure the weightof the tank however, these types of systems are expensive to build and cumbersome torepair. They also add a lot of weight to the equipment which increases the fuel consump-tion of the tractor. Thus, this thesis investigates the use of radar sensors together witha number of Machine Learning algorithms. Fourteen radar sensors are fitted to a tankat different positions, data is collected, and a preprocessing method is developed. Then,the data is used to test the following Machine Learning algorithms: Bagged RegressionTrees (BG), Random Forest Regression (RF), Boosted Regression Trees (BRT), LinearRegression (LR), Linear Support Vector Machine (L-SVM), Multi-Layer Perceptron Re-gressor (MLPR). The model with the best 5-fold crossvalidation scores was Random For-est, closely followed by Boosted Regression Trees. A robustness test, using 5 previouslyunseen scenarios, revealed that the Boosted Regression Trees model was the most robust.The radar position analysis showed that 6 sensors together with the MLPR model gavethe best RMSE scores.In conclusion, the models performed well on this type of system which shows thatthey might be a competitive alternative to load cell based systems.

Page generated in 0.0251 seconds