• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 3
  • Tagged with
  • 3
  • 3
  • 3
  • 2
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Simply supported composite railway bridge: a comparison of ballasted and ballastless track alternatives : Case of the Banafjäl Bridge

Gillet, Guillaume January 2010 (has links)
No description available.
2

Numerical modelling of high-speed railway transition zone

Norberg, Karl January 2022 (has links)
Transition zones are changes in the track structure, detected by an abrupt deviationin track stiffness and/or differential settlements. One inevitable transition zone is thebridge approach. This study has investigated in this transition zone, adapted for highspeed,ballastless track. The aim was to observe the general behaviour of the transitionzone including its critical components, and to compare different measures, transitionconstructions, to manage with the eventual problems. A base model, called Nullmodel,was developed using the 3D finite element method to evaluate the behaviour of thetransition zone. Based on the Nullmodel, six comparative models have been created,including different types of transition constructions within the substructure. New forthis study is that it investigates the overall behaviour of the transition zone, and alsothe substitution of subballast in combination with approach blocks.For the general behaviour of the transition zone, the results have shown that theballastless track does not behave as a traditional ballasted track. Furthermore,the direction of travel affects the magnitude of different dynamical parameters.Comparing different transition constructions, replacing the subballast with ahydraulically bonded layer in combination with an approach block with cementbounded granular material is found to be the best alternative. Finally, the invertedapproach block is found to be an equally good, or better, mitigative measure incomparison with the regular approach block.
3

Rail track resistance verification considering track-bridge-interaction

Kang, Chongjie 24 November 2021 (has links)
As rails are vital parts of a track system, it is essential to ensure their safe and reliable operation. The present verification approaches and limit values regarding the permissible additional stresses of the rail under compression and tension considering track-bridge-interaction (TBI) were developed in the 1980s. However, with the rapid development of the railway industry and the increasing of train speeds, rail infrastructures are subjected to ever more frequent, greater loads and more complicated loading conditions, especially in the area of bridges. Moreover, the manufacturing technologies of railway components have been further developed. Taking all the aforementioned variations into account, the current verification approaches and limit values do not apply properly today and shall be updated. For this purpose, new investigations are carried out in this dissertation. As major parts of this cumulative dissertation, the published investigations are divided into three main blocks. The first block is the state of the art. In this block, a detailed background knowledge and a state of the art description of the permissible additional stresses in railway tracks due to TBI are given. Furthermore, the motivation for the studies within the scope of this dissertation is addressed. The second block deals with the rail resistance under compressive forces in ballastless track systems. Accordingly, numerical investigations on the behaviour of rails in ballastless track systems under compressive axial forces in the vicinity of bridge joints were performed. Experimental tests were also carried out on two 8.17 m long rails fixed with BSPFF-B-1 and SBS300-1 fasteners on the ÖBB-Porr slab track system. It was found that the rail resistance under longitudinal compressive loads can be largely increased. The third block focuses on the rail resistance under tension. First, extensive experiments were conducted on rail behaviour for up to five million cyclic loads in both vertical and transverse directions under different minimum stress levels. Subsequently, the sectioning method and the X-Ray diffraction method were applied to determine the residual stress distribution in the rail. Afterwards, the determined residual stress results and the fatigue test results are analysed together. As a result, a new comprehensive Smith-diagram, which took into account the actual rail residual stresses, up to five million load cycles in both vertical and transverse directions of the rail, was achieved. In addition, two studies are supplemented. One deals with the fatigue behaviour of rails for up to 50 million load cycles and the other concerns the fatigue behaviour of rails from a different batch for up to five million load cycles. Based on all these aforementioned investigations, it is concluded that the current limit values and approaches regarding the rail resistance in ballastless track systems under compression and tension considering TBI are too conservative. In the end, new verification approaches and limit values are proposed.

Page generated in 0.0554 seconds