• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • Tagged with
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

PROPRIEDADES FÍSICO-MECÂNICAS DE CHAPAS AGLOMERADAS PRODUZIDAS COM BAMBU, PINUS E EUCALIPTO. / PHYSICAL AND MECHANICAL PROPERTIES OF PARTICLEBOARD PRODUCED WITH BAMBOO, PINE AND EUCALYPT.

Morais, Weslley Wilker Corrêa 18 July 2011 (has links)
This study investigated the physical and mechanical properties of particleboards formed of bamboo (Bambusa tuldoides), pine (Pinus taeda) and eucalyptus (Eucalyptus grandis) and their combinations. To this end, panels were made, defined by the use of each type of particle pure or mixed by two or three being set 0, 25, 50, 75 and 100% of dry weight proportion, totalling 36 panels. The physical tests performed were the moisture content, density, water absorption and thickness swelling and the mechanical were static bending, screw withdrawal and internal bond. In order to complement the study, non-destructive testing were performed by direct and indirect ultrasonic to obtain models relating destructive and nondestructive methods. The results were analysed by for simple correlation and regression. In general, homogeneous panels made of pine and eucalypt showed better results than pure bamboo. The inclusion of bamboo particles decreased, mainly, the mechanical properties of the panels. All particleboard were below the minimum standards in physical and mechanical tests, only internal bond in panels pure pinehad higher values than commercial standards. Treatments using a combination of all species were compared, graphically, and resulted in lower than homogeneous panels of bamboo, for water absorption after two and twenty four hours and swelling after two hours. However, showed superior performance in swelling in thickness after twenty four hours, modulus of rupture and modulus of elasticity in static bending, screw withdrawal and internal bond. The non-destructive direct method showed better correlations than the indirect one. The significant correlations of the direct dynamic modulus of elasticity, in order of significance, occurred with board density, screw withdrawal, and static modulus of rupture and modulus of elasticity. / Este estudo investigou as propriedades físicas e mecânicas dos painéis aglomerados constituídos de bambu (Bambusa tuldoides), pinus (Pinus taeda) e eucalipto (Eucalyptus grandis) e as combinações entre eles. Para tanto, foram confeccionados painéis, definidos pelo uso de cada espécie de partícula pura ou misturada a duas ou três sendo estabelecidos 0, 25, 50, 75 e 100% de proporção em relação a massa seca, totalizando 36 painéis. Os ensaios físicos realizados foram o teor de umidade, massa específica, absorção d água e o inchamento em espessura e os mecânicos foram a flexão estática, arrancamento de parafusos e ligação interna. Para complementar o estudo, foi realizado ensaio não destrutivo pelos métodos direto e indireto para se obter modelos entre os ensaios destrutivos e o não destrutivo. Os resultados obtidos foram submetidos ao teste de correlação simples e analisados por regressão. De modo geral, os painéis homogêneos de pinus e eucalipto apresentaram melhores resultados que dos painéis formados apenas por bambu. A inclusão de bambu prejudicou, principalmente, as propriedades mecânicas das chapas. Todos os painéis ficaram abaixo dos valores mínimos das normas para os ensaios físicos e mecânicos, apenas no ensaio de tração os painéis homogêneos de pinus obtiveram valores superiores aos padrões de comercialização. Os tratamentos utilizando a combinação de todas as espécies foram comparados, graficamente, e resultaram em painéis inferiores aos homogêneos de bambu, para a absorção d água após duas e vinte quatro horas e inchamento após duas horas. Porém, apresentaram desempenhos superiores no inchamento após vinte quatro horas, módulos de ruptura e elasticidade estáticos, arrancamento de parafusos e ligação interna. Para os ensaios não destrutivos o método de propagação direto apresentou melhores correlações quando comparado ao indireto. As correlações significativas do módulo de elasticidade dinâmico direto, em ordem de significância, ocorreram com a massa específica observada, o arrancamento de parafusos, módulo de ruptura e módulo de elasticidade estático.
2

Design de estrutura biônica através de prototipagem e análise por elementos finitos baseada em microtomografia do bambu

Palombini, Felipe Luis January 2016 (has links)
O bambu é considerado um dos materiais naturais com a melhor relação resistência por peso. Entre as características responsáveis encontram-se os feixes fibrosos do esclerênquima, que protegem os elementos de condução de água e solutos na planta, além de serem preenchidos pelo parênquima. Os feixes estão distribuídos gradual-mente, da parte interna à externa do bambu, aumentando a rigidez do colmo. Contudo, a morfologia da seção dos feixes fibrosos e a presença da matriz parenquimática no caule ainda não foram totalmente estudados, quanto à sua importância estrutural, nem aplicados em estruturas biônicas. Esse estudo trata do design de estruturas biônicas baseada na caracterização do bambu, por meio de técnicas não-invasivas, de proto-tipagem e de análise por elementos finitos. Um protocolo de amolecimento e secagem para secionamento foi seguido em uma amostra de bambu (Bambusa tuldoides Munro). A superfície da amostra foi analisada por microtomografia computadorizada de raios X de alta resolução. As imagens resultantes permitiram a segmentação dos tecidos constituintes e caracterização em nível celular. Os modelos 3D do parênquima e do esclerênquima foram discretizados para uma análise por elementos finitos não-linear. Os resultados mostraram que o parênquima é configurado como uma matriz celular de baixa densidade e que distribui as tensões em todos os elementos de re-forço na planta, sendo considerado um tecido com importante função estrutural. De mesmo modo, a geometria da seção dos feixes fibrosos apresentou um desempenho mecânico superior às seções referenciais. Ambas características foram aplicadas no desenvolvimento de duas estruturas biônicas, sendo analisadas como mais eficientes em comparação a um modelo da literatura, e impressas em 3D para análise visual. / Bamboo is considered one of the natural materials with the best strength-to-weight ratio. Among the features responsible for its properties are the sclerenchyma’s fiber bundles that protect the conducting elements of water and solutes in the plant, and are filled by parenchyma. Bamboo fibers are gradually distributed from the inner to the outer side of the plant, thus increasing the culm stiffness. However, the morphology of the section of the fiber bundles and the presence of the parenchymatic matrix in the stem have not been fully studied regarding its structural importance, neither applied in bionic structures. This study addresses the design of bionic structures based on the characterization of bamboo, by means of non-invasive techniques, rapid prototyping and finite element analysis. A bamboo sample (Bambusa tuldoides Munro) was col-lected and softening and drying protocols were followed for proper sectioning. The surface of the sample was analyzed by high-resolution X-ray microcomputed tomog-raphy. Resulting images allowed the segmentation of the sample’s constituent tissues and the characterization at a cellular level. The 3D models of the parenchyma and sclerenchyma were discretized for a non-linear finite element analysis. The results showed that the parenchyma is set as a low-density cellular matrix by distributing the stresses among all reinforcement elements in the plant, being considered a tissue with great structural importance. Likewise, the shape of the fiber bundles’ section showed superior mechanical performance compared to reference sections. Both characteris-tics were applied in the development of two bionic structures that were analyzed as more efficient than a literature model, and 3D printed for a visual analysis.
3

Design de estrutura biônica através de prototipagem e análise por elementos finitos baseada em microtomografia do bambu

Palombini, Felipe Luis January 2016 (has links)
O bambu é considerado um dos materiais naturais com a melhor relação resistência por peso. Entre as características responsáveis encontram-se os feixes fibrosos do esclerênquima, que protegem os elementos de condução de água e solutos na planta, além de serem preenchidos pelo parênquima. Os feixes estão distribuídos gradual-mente, da parte interna à externa do bambu, aumentando a rigidez do colmo. Contudo, a morfologia da seção dos feixes fibrosos e a presença da matriz parenquimática no caule ainda não foram totalmente estudados, quanto à sua importância estrutural, nem aplicados em estruturas biônicas. Esse estudo trata do design de estruturas biônicas baseada na caracterização do bambu, por meio de técnicas não-invasivas, de proto-tipagem e de análise por elementos finitos. Um protocolo de amolecimento e secagem para secionamento foi seguido em uma amostra de bambu (Bambusa tuldoides Munro). A superfície da amostra foi analisada por microtomografia computadorizada de raios X de alta resolução. As imagens resultantes permitiram a segmentação dos tecidos constituintes e caracterização em nível celular. Os modelos 3D do parênquima e do esclerênquima foram discretizados para uma análise por elementos finitos não-linear. Os resultados mostraram que o parênquima é configurado como uma matriz celular de baixa densidade e que distribui as tensões em todos os elementos de re-forço na planta, sendo considerado um tecido com importante função estrutural. De mesmo modo, a geometria da seção dos feixes fibrosos apresentou um desempenho mecânico superior às seções referenciais. Ambas características foram aplicadas no desenvolvimento de duas estruturas biônicas, sendo analisadas como mais eficientes em comparação a um modelo da literatura, e impressas em 3D para análise visual. / Bamboo is considered one of the natural materials with the best strength-to-weight ratio. Among the features responsible for its properties are the sclerenchyma’s fiber bundles that protect the conducting elements of water and solutes in the plant, and are filled by parenchyma. Bamboo fibers are gradually distributed from the inner to the outer side of the plant, thus increasing the culm stiffness. However, the morphology of the section of the fiber bundles and the presence of the parenchymatic matrix in the stem have not been fully studied regarding its structural importance, neither applied in bionic structures. This study addresses the design of bionic structures based on the characterization of bamboo, by means of non-invasive techniques, rapid prototyping and finite element analysis. A bamboo sample (Bambusa tuldoides Munro) was col-lected and softening and drying protocols were followed for proper sectioning. The surface of the sample was analyzed by high-resolution X-ray microcomputed tomog-raphy. Resulting images allowed the segmentation of the sample’s constituent tissues and the characterization at a cellular level. The 3D models of the parenchyma and sclerenchyma were discretized for a non-linear finite element analysis. The results showed that the parenchyma is set as a low-density cellular matrix by distributing the stresses among all reinforcement elements in the plant, being considered a tissue with great structural importance. Likewise, the shape of the fiber bundles’ section showed superior mechanical performance compared to reference sections. Both characteris-tics were applied in the development of two bionic structures that were analyzed as more efficient than a literature model, and 3D printed for a visual analysis.
4

Design de estrutura biônica através de prototipagem e análise por elementos finitos baseada em microtomografia do bambu

Palombini, Felipe Luis January 2016 (has links)
O bambu é considerado um dos materiais naturais com a melhor relação resistência por peso. Entre as características responsáveis encontram-se os feixes fibrosos do esclerênquima, que protegem os elementos de condução de água e solutos na planta, além de serem preenchidos pelo parênquima. Os feixes estão distribuídos gradual-mente, da parte interna à externa do bambu, aumentando a rigidez do colmo. Contudo, a morfologia da seção dos feixes fibrosos e a presença da matriz parenquimática no caule ainda não foram totalmente estudados, quanto à sua importância estrutural, nem aplicados em estruturas biônicas. Esse estudo trata do design de estruturas biônicas baseada na caracterização do bambu, por meio de técnicas não-invasivas, de proto-tipagem e de análise por elementos finitos. Um protocolo de amolecimento e secagem para secionamento foi seguido em uma amostra de bambu (Bambusa tuldoides Munro). A superfície da amostra foi analisada por microtomografia computadorizada de raios X de alta resolução. As imagens resultantes permitiram a segmentação dos tecidos constituintes e caracterização em nível celular. Os modelos 3D do parênquima e do esclerênquima foram discretizados para uma análise por elementos finitos não-linear. Os resultados mostraram que o parênquima é configurado como uma matriz celular de baixa densidade e que distribui as tensões em todos os elementos de re-forço na planta, sendo considerado um tecido com importante função estrutural. De mesmo modo, a geometria da seção dos feixes fibrosos apresentou um desempenho mecânico superior às seções referenciais. Ambas características foram aplicadas no desenvolvimento de duas estruturas biônicas, sendo analisadas como mais eficientes em comparação a um modelo da literatura, e impressas em 3D para análise visual. / Bamboo is considered one of the natural materials with the best strength-to-weight ratio. Among the features responsible for its properties are the sclerenchyma’s fiber bundles that protect the conducting elements of water and solutes in the plant, and are filled by parenchyma. Bamboo fibers are gradually distributed from the inner to the outer side of the plant, thus increasing the culm stiffness. However, the morphology of the section of the fiber bundles and the presence of the parenchymatic matrix in the stem have not been fully studied regarding its structural importance, neither applied in bionic structures. This study addresses the design of bionic structures based on the characterization of bamboo, by means of non-invasive techniques, rapid prototyping and finite element analysis. A bamboo sample (Bambusa tuldoides Munro) was col-lected and softening and drying protocols were followed for proper sectioning. The surface of the sample was analyzed by high-resolution X-ray microcomputed tomog-raphy. Resulting images allowed the segmentation of the sample’s constituent tissues and the characterization at a cellular level. The 3D models of the parenchyma and sclerenchyma were discretized for a non-linear finite element analysis. The results showed that the parenchyma is set as a low-density cellular matrix by distributing the stresses among all reinforcement elements in the plant, being considered a tissue with great structural importance. Likewise, the shape of the fiber bundles’ section showed superior mechanical performance compared to reference sections. Both characteris-tics were applied in the development of two bionic structures that were analyzed as more efficient than a literature model, and 3D printed for a visual analysis.

Page generated in 0.0387 seconds