• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 17
  • 2
  • 1
  • 1
  • 1
  • Tagged with
  • 25
  • 25
  • 10
  • 8
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
11

Interpolation of Subcouples, New Results and Applications

Sunehag, Peter January 2003 (has links)
<p>Suppose that <b>X</b> and <b>Y</b> are Banach couples and suppose that there is a bounded linear couple map Q from <b>Y</b> to <b>X</b> which has the property that Q restricted to the endpoint spaces is injective and the images of the endpointspaces of <b>Y</b> are closed in the endpoint spaces of <b>X</b>, then we say that <b>Y</b> is a subcouple of <b>X.</b> </p><p>If F is an interpolation functor we want to know how F(<b>Y</b>) is related to F(<b>X</b>). In particular we want to know for which F it holds that Q is an injection that maps F(<b>Y</b>) onto a closed subspace of F(<b>X</b>). In recent years interest has been paid to subcouples of finite codimension and in particular to subcouples of codimension one. We will in this thesis present an interpolation theory for subcouples of codimension one and then generalize it to finite codimension. Our theory will include both a larger class of couples and a larger class of interpolation functors than earlier results.</p><p>The interpolation method that will be considered is the regular real method. Our general theory will imply older results by Kalton, Ivanov and Löfström. We will use the theory to answer questions about Hardy-type inequalities that were raised by Krugljak, Maligranda and Persson in 1999 and our new theory will also answer a question concerning interpolation of Banach algebras.</p>
12

Interpolation of Subcouples, New Results and Applications

Sunehag, Peter January 2003 (has links)
Suppose that <b>X</b> and <b>Y</b> are Banach couples and suppose that there is a bounded linear couple map Q from <b>Y</b> to <b>X</b> which has the property that Q restricted to the endpoint spaces is injective and the images of the endpointspaces of <b>Y</b> are closed in the endpoint spaces of <b>X</b>, then we say that <b>Y</b> is a subcouple of <b>X.</b> If F is an interpolation functor we want to know how F(<b>Y</b>) is related to F(<b>X</b>). In particular we want to know for which F it holds that Q is an injection that maps F(<b>Y</b>) onto a closed subspace of F(<b>X</b>). In recent years interest has been paid to subcouples of finite codimension and in particular to subcouples of codimension one. We will in this thesis present an interpolation theory for subcouples of codimension one and then generalize it to finite codimension. Our theory will include both a larger class of couples and a larger class of interpolation functors than earlier results. The interpolation method that will be considered is the regular real method. Our general theory will imply older results by Kalton, Ivanov and Löfström. We will use the theory to answer questions about Hardy-type inequalities that were raised by Krugljak, Maligranda and Persson in 1999 and our new theory will also answer a question concerning interpolation of Banach algebras.
13

Invertibility of a Class of Toeplitz Operators over the Half Plane

Vasilyev, Vladimir 07 February 2007 (has links) (PDF)
This dissertation is concerned with invertibility and one-sided invertibility of Toeplitz operators over the half plane whose generating functions admit homogenous discontinuities, and with stability of their pseudo finite sections. The invertibility criterium is given in terms of invertibility of a family of one dimensional Toeplitz operators with piecewise continuous generating functions. The one-sided invertibility criterium is given it terms of constraints on the partial indices of certain Toeplitz operator valued function.
14

Ponto fixo: uma introdução no ensino médio

Albuquerque, Philipe Thadeo Lima Ferreira [UNESP] 21 February 2014 (has links) (PDF)
Made available in DSpace on 2014-11-10T11:09:53Z (GMT). No. of bitstreams: 0 Previous issue date: 2014-02-21Bitstream added on 2014-11-10T11:57:46Z : No. of bitstreams: 1 000790735.pdf: 1590232 bytes, checksum: 5297d173df2a824606d944767eb1610c (MD5) / O principal objetivo deste trabalho consiste na produção de um referencial teórico relacionado aos conceitos de ponto fixo, que possibilite, aos alunos do Ensino Médio, o desenvolvimento de habilidades e competências relacionadas à Matemática. Neste trabalho são colocadas abordagens contextualizadas e proposições referentes às noções de ponto fixo nas principais funções reais (afim, quadrática, modular, dentre outras) e sua interpretação geométrica. São abordados de maneira introdutória os conceitos do teorema do ponto fixo de Brouwer, o teorema do ponto fixo de Banach e o método de resolução de equações por aproximações sucessivas / The main objective of this work is to produce a theoretical concepts related to fixed point, enabling, for high school students, the development of skills and competencies related to Mathematics. This work placed contextualized approaches and proposals relating to notions of fixed point in the main real functions (affine, quadratic, modular, among others) and its geometric interpretation. Are approached introductory concepts of the fixed point theorem of Brouwer's, fixed point theorem of Banach and the method of solving equations by successive approximations
15

Extremely Amenable Groups and Banach Representations

Ronquillo Rivera, Javier Alfredo 11 July 2018 (has links)
No description available.
16

Approximation Methods for Two Classes of Singular Integral Equations

Rogozhin, Alexander 29 January 2003 (has links) (PDF)
The dissertation consists of two parts. In the first part approximate methods for multidimensional weakly singular integral operators with operator-valued kernels are investigated. Convergence results and error estimates are given. There is considered an application of these methods to solving radiation transfer problems. Numerical results are presented, too. In the second part we consider a polynomial collocation method for the numerical solution of a singular integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the form \ $aI + b \mu^{-1} S \mu I $\ with \ $S$\ the Cauchy singular integral operator, with piecewise continuous coefficients \ $a$\ and \ $b,$\ and with a Jacobi weight \ $\mu.$\ To the equation we apply a collocation method, where the collocation points are the Chebyshev nodes of the first kind and where the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this collocation method in weighted \ $L^2$\ spaces, we derive necessary and sufficient conditions. Moreover, the extension of these results to an algebra generated by the sequences of the collocation method applied to the mentioned singular integral operators is discussed and the behaviour of the singular values of the discretized operators is investigated. / Die Dissertation beschäftigt sich insgesamt mit der numerischen Analysis singulärer Integralgleichungen, besteht aber aus zwei voneinander unabhängigen Teilen. Der este Teil behandelt Diskretisierungsverfahren für mehrdimensionale schwach singuläre Integralgleichungen mit operatorwertigen Kernen. Darüber hinaus wird hier die Anwendung dieser allgemeinen Resultate auf ein Strahlungstransportproblem diskutiert, und numerische Ergebnisse werden präsentiert. Im zweiten Teil betrachten wir ein Kollokationsverfahren zur numerischen Lösung Cauchyscher singulärer Integralgleichungen auf Intervallen. Der Operator der Integralgleichung hat die Form \ $aI + b \mu^{-1} S \mu I $\ mit dem Cauchyschen singulären Integraloperator \ $S,$\ mit stückweise stetigen Koeffizienten \ $a$\ und \ $b,$\ und mit einem klassischen Jacobigewicht \ $\mu.$\ Als Kollokationspunkte dienen die Nullstellen des n-ten Tschebyscheff-Polynoms erster Art und Ansatzfunktionen sind ein in einem geeigneten Hilbertraum orthonormales System gewichteter Tschebyscheff-Polynome zweiter Art. Wir erhalten notwendige und hinreichende Bedingungen für die Stabilität und Konvergenz dieses Kollokationsverfahrens. Außerdem wird das Stabilitätskriterium auf alle Folgen aus der durch die Folgen des Kollokationsverfahrens erzeugten Algebra erweitert. Diese Resultate liefern uns Aussagen über das asymptotische Verhalten der Singulärwerte der Folge der diskreten Operatoren.
17

Modules maps and Invariant subsets of Banach modules of locally compact groups

Hamouda, Hawa 13 March 2013 (has links)
For a locally compact group G, the papers [13] and [7] have many results about G-invariant subsets of G-modules, and the relationship between G-module maps, L1(G)-module maps and M(G)-module maps. In both papers, the results were given for one specific module action. In this thesis we extended many of their results to arbitrary Banach G-modules. In addition, we give detailed proofs of most of the results found in the first section of the paper [21].
18

Modules maps and Invariant subsets of Banach modules of locally compact groups

Hamouda, Hawa 13 March 2013 (has links)
For a locally compact group G, the papers [13] and [7] have many results about G-invariant subsets of G-modules, and the relationship between G-module maps, L1(G)-module maps and M(G)-module maps. In both papers, the results were given for one specific module action. In this thesis we extended many of their results to arbitrary Banach G-modules. In addition, we give detailed proofs of most of the results found in the first section of the paper [21].
19

Approximation Methods for Two Classes of Singular Integral Equations

Rogozhin, Alexander 13 December 2002 (has links)
The dissertation consists of two parts. In the first part approximate methods for multidimensional weakly singular integral operators with operator-valued kernels are investigated. Convergence results and error estimates are given. There is considered an application of these methods to solving radiation transfer problems. Numerical results are presented, too. In the second part we consider a polynomial collocation method for the numerical solution of a singular integral equation over the interval. More precisely, the operator of our integral equation is supposed to be of the form \ $aI + b \mu^{-1} S \mu I $\ with \ $S$\ the Cauchy singular integral operator, with piecewise continuous coefficients \ $a$\ and \ $b,$\ and with a Jacobi weight \ $\mu.$\ To the equation we apply a collocation method, where the collocation points are the Chebyshev nodes of the first kind and where the trial space is the space of polynomials multiplied by another Jacobi weight. For the stability and convergence of this collocation method in weighted \ $L^2$\ spaces, we derive necessary and sufficient conditions. Moreover, the extension of these results to an algebra generated by the sequences of the collocation method applied to the mentioned singular integral operators is discussed and the behaviour of the singular values of the discretized operators is investigated. / Die Dissertation beschäftigt sich insgesamt mit der numerischen Analysis singulärer Integralgleichungen, besteht aber aus zwei voneinander unabhängigen Teilen. Der este Teil behandelt Diskretisierungsverfahren für mehrdimensionale schwach singuläre Integralgleichungen mit operatorwertigen Kernen. Darüber hinaus wird hier die Anwendung dieser allgemeinen Resultate auf ein Strahlungstransportproblem diskutiert, und numerische Ergebnisse werden präsentiert. Im zweiten Teil betrachten wir ein Kollokationsverfahren zur numerischen Lösung Cauchyscher singulärer Integralgleichungen auf Intervallen. Der Operator der Integralgleichung hat die Form \ $aI + b \mu^{-1} S \mu I $\ mit dem Cauchyschen singulären Integraloperator \ $S,$\ mit stückweise stetigen Koeffizienten \ $a$\ und \ $b,$\ und mit einem klassischen Jacobigewicht \ $\mu.$\ Als Kollokationspunkte dienen die Nullstellen des n-ten Tschebyscheff-Polynoms erster Art und Ansatzfunktionen sind ein in einem geeigneten Hilbertraum orthonormales System gewichteter Tschebyscheff-Polynome zweiter Art. Wir erhalten notwendige und hinreichende Bedingungen für die Stabilität und Konvergenz dieses Kollokationsverfahrens. Außerdem wird das Stabilitätskriterium auf alle Folgen aus der durch die Folgen des Kollokationsverfahrens erzeugten Algebra erweitert. Diese Resultate liefern uns Aussagen über das asymptotische Verhalten der Singulärwerte der Folge der diskreten Operatoren.
20

Invertibility of a Class of Toeplitz Operators over the Half Plane

Vasilyev, Vladimir 28 September 2006 (has links)
This dissertation is concerned with invertibility and one-sided invertibility of Toeplitz operators over the half plane whose generating functions admit homogenous discontinuities, and with stability of their pseudo finite sections. The invertibility criterium is given in terms of invertibility of a family of one dimensional Toeplitz operators with piecewise continuous generating functions. The one-sided invertibility criterium is given it terms of constraints on the partial indices of certain Toeplitz operator valued function.

Page generated in 0.0749 seconds