• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 186
  • 135
  • 45
  • 19
  • 5
  • 3
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • Tagged with
  • 470
  • 133
  • 106
  • 99
  • 88
  • 81
  • 58
  • 49
  • 47
  • 43
  • 42
  • 41
  • 41
  • 40
  • 35
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
251

Stratigraphy and sedimentary environments of the Late Permian Dicynodon Assemblage Zone (Karoo Supergroup, South Africa) and implications for basin development

Viglietti, Pia Alexa January 2016 (has links)
A thesis submitted to the Faculty of Science, University of the Witwatersrand, Johannesburg in fulfilment of the requirements for the degree of Doctor of Philosophy. June 2016. / The Dicynodon Assemblage Zone (DiAZ) spans the last three million years of the Late Permian (Lopingian) Beaufort Group (Karoo Supergroup). Fluvio-lacustrine conditions covered the entire Karoo Basin during this period, preserved as the rocks of the Balfour, Teekloof, and Normandien formations. However widely separated exposures and few dateable horizons make correlating between lithostratigraphic subdivisions difficult. Here a revised litho- and biostratigraphic framework is provided for the Upper Permian DiAZ. The Balfour Formation’s Barberskrans Member (BM) is renamed due to identifying the Oudeberg Member and not the BM at the current type locality (Barberskrans Cliffs). It is renamed Ripplemead member (RM) after Ripplemead farm 20 km north of Nieu Bethesda where it outcrops. The Teekloof Formation’s Javanerskop member and Musgrave Grit unit in the central Free State Province are regarded mappable units whereas the Boomplaas sandstone (BS) may represent a unit that is a lateral equivalent to the Oudeberg Member. Palaeontological and detrital zircon data suggest none of these locally persistent sandstone horizons correlate temporally. Three index fossils that currently define the DiAZ (Dicynodon lacerticeps, Theriognathus microps, and Procynosuchus delaharpeae) appear below its lower boundary and disappear below the Permo-Triassic Boundary (PTB), coincidentally with the appearance of Lystrosaurus maccaigi. The base of the DiAZ is redefined, with the revived Daptocephalus leoniceps and T. microps re-established as the index fossil for the newly proposed Daptocephalus Assemblage Zone (DaAZ), and is subdivided into two subzones. Da. leoniceps and T. microps’ appearance define the lower and L. maccaigi defines the base of the upper subzone. The same patterns of disappearance are observed at the same stratigraphic interval throughout the basin, despite the thinning of strata northward. Additionally wetter floodplain conditions prevailed in the Lower DaAZ than in the Upper DaAZ which likely reflects climatic changes associated with the Permo-Triassic mass extinction (PTME). Palaeocurrent and detrital zircon data demonstrate a southerly source area, and recycled orogen petrography indicates the Cape Supergroup is the source of Upper Permian strata. Dominant late Permian zircon population supports the foreland nature of the Karoo Basin. Orogenic loading/unloading events are identified by two fining-upward cycles, separated by a diachronous third-order subaerial unconformity at the base of the RM and Javanerskop members. Sediment progradation northwards was out-of-phase with the south and wedge-shaped. Distributive fluvial systems depositing sediment within a retroarc foreland basin best explains these observations. Lithostratigraphic beds and members are recommended for use as local marker horizons only in conjunction with other proxies, such as index fossils or radiometric dates in future studies. / LG2017
252

An Investigation of the First-Order Mechanics of Polygonal Fault Networks of Utopia Planitia, Mars

Islam, Fariha 01 January 2009 (has links) (PDF)
This study investigates the first-order mechanics of polygonal fault networks in Utopia Planitia, Mars and whether terrestrial sedimentary basin polygonal terrains are an analog for giant Martian polygons since there is an overlap in scale between the 3 km terrestrial polygons and the 1-40 km giant polygons of Mars. Volumetric contraction accommodates the extensional faulting observed in both cases. Boundary Element Method numerical models are used to simulate the first-order-mechanics of the faulting process. Models use material properties for wet, fine sediment, and apply an extensional strain to produce volumetric contraction. Fracture seeds that simulate the buried topography beneath the basin are placed at the base of the model. MOLA tracks from the Highlands are used to create the uneven topography beneath the basin since the underlying topography of the Northern Lowlands is thought to be similar to the topography of the older, Southern Highlands. The model investigates whether 1 & 2 km layer of wet, fine sediments will produce the fracture spacing observed within the polygonal terrains in Utopia (~5 – 6.5 km). A fracture network that is similar to the scale of the polygonal terrain in the Utopia Basin is established within the model at low strain, supporting the idea that buried topography could be the primary scaling factor for the polygon grabens. The results do not constrain an upper limit for strain; the observed trough widths in Utopia suggest that further strain was expressed by the widening of the troughs. Material properties for wet, fine sediments, analogous to the terrestrial counterpart, are appropriate for the model to match what is observed in Utopia. The power-law scale of Highlands topography controls the scale of the surface fracture spacing in the models. Measurements of running average of trough spacing along radial transects with respect to the center of the basin did not yield a monotonic decrease in trough spacing as would be expected for a smooth basement with no buried topography. Study results support the case for buried topography controlling the scale of the giant polygons of Utopia Planitia.
253

Potential impacts of climate change and land-use change on hydrological drought in the Western Cape (South Africa)

Naik, Myra 31 March 2023 (has links) (PDF)
The Western Cape (South Africa) recently witnessed the most severe drought on record. The meteorological drought, which was characterised by below-normal rainfall for three consecutive years (2015 – 2017), cascaded to agricultural and then hydrological drought, resulting in devastating socio-economic consequences. While some studies indicate that climate change may increase the severity and frequency of droughts in the Western Cape in the future, there is a lack of information on how to mitigate the effects of future climate change on hydrological drought. This dissertation therefore investigated the extent to which land-use changes could be applied to reduce climate change impacts on future hydrological drought in this region. For the study, the revised Soil Water Assessment Tool (SWAT+) was calibrated and evaluated over four river basins in the Western Cape, and the climate simulation dataset from the COordinated Regional Downscaling EXperiment (CORDEX) was bias-corrected. Using the bias-corrected climate data as a forcing, the SWAT+ was used to project the impacts of future climate change on water yield and hydrological drought in the four basins and to quantify the sensitivity of the projection to four feasible land-use change scenarios in these basins. The relevant land-use scenarios are the expansion of mixed forests (FrLand), the restoration of grassland (GrLand), the restoration of shrubland (SrLand), and the expansion of cropland (CrLand). The model evaluation shows good agreement between the simulated and observed monthly streamflow at hydrological stations, and the bias correction of the CORDEX datasets improved the quality of the SWAT+ hydrological simulations in the four basins. The climate change projection depicts an increase in temperature and potential evapotranspiration but a decrease in precipitation and all the hydrological variables. Drying is projected across the Western Cape, and the magnitude of such drying increases with higher global warming levels (GWLs). The land-use changes alter the impacts of climate change by influencing the hydrological balance. While FrLand mitigates the impacts of climate change on the frequency of hydrological drought by increasing streamflow, soil water and percolation, CrLand mitigates the impacts by increasing surface runoff. However, the magnitudes of these land-use change impacts are very small compared to the climate change impacts. Hence, the results suggest that land-use changes may not be an efficient strategy for mitigating the climate change impacts on hydrological drought over the region. The findings obtained from this 2 research provide relevant information towards mitigating the severity of future droughts and improving water security in Western Cape River Basins.
254

Characterizing the Impact of Freshwater Salinization on Engineered Ecosystems: Implications for Performance, Resilience, and Self-Repair Through Phytoremediation

Long, Samuel Bowen 15 June 2023 (has links)
Stormwater detention basins are commonly used in the Eastern United States to temporarily store and attenuate stormwater runoff, and also serve as habitats for native and exotic plants. However, during winter, these basins receive saline runoff from road salt application, which contributes to Freshwater Salinization Syndrome (FSS). Since limited research has connected direct measurement of soil and stormwater salinities to biodiversity and phytoremediation potential of salt-tolerant plant species, this thesis aimed to fill this gap. We selected a set of detention basins draining mostly pervious areas, parking lots, or roads in Northern Virginia and measured temporal variations in stormwater and soil salinities, depth profiles of soil salinities, plant community composition, and plant tissue ion concentration. The results indicated elevated levels of sodium, chloride, electrical conductivity (EC), and exchangeable sodium percentage (ESP)/sodium adsorption ratio (SAR) in soil and stormwater after road salt application during winter, followed by a decrease during the growing season for basins draining parking lots and roads. A subsequent increase at the end of the season was observed for all site types. While some stormwater samples exceeded toxicity thresholds, most soil samples did not exceed their respective thresholds nor reach saline or sodic conditions, and native and exotic plant species of both salt-sensitive and salt-tolerant classifications were observed at almost all sites, although proportions of each varied by site type. Tissue analysis of select plants revealed ionic concentrations that generally coincided with observed soil and stormwater concentrations at each major site type. These findings have implications for future detention basin planting regimes to mitigate FSS, and the thesis discusses native plants found to provide the most benefit for phytoremediation. / Master of Science / Stormwater detention basins are commonly used in the Eastern United States. They slowly release stormwater runoff and serve as habitats for native and exotic plants. However, during winter, these basins receive saline runoff from road salt application. This contributes to Freshwater Salinization Syndrome (FSS). Limited research has connected direct measurement of soil and stormwater salinities to biodiversity and plants' ability to uptake salts, so this thesis aimed to fill this gap. A set of detention basins draining mostly pervious areas, parking lots, or roads in Northern Virginia were selected. Next, stormwater and soil salinities over time, depth profiles of soil salinities, plant community composition, and plant tissue ion concentration were measured. The results showed higher levels of standard salinity benchmarks in soil and stormwater after road salt application during winter, followed by a decrease during the growing season for parking lot and road sites. A final increase in the fall was observed for all site types. While some stormwater samples were toxic to plants, most soil samples were not toxic, saline, or sodic. Also, native and exotic plant species of both salt-sensitive and salt-tolerant classifications were observed at almost all sites, but proportions of each varied by site type. Plant tissues contained ionic concentrations that reflected observed soil and stormwater concentrations at each site type. These findings can inform future detention basin planting regimes to mitigate FSS. The thesis also discusses native plants that provide benefits for phytoremediation.
255

STRUCTURAL CONTROLS ON EXTENSIONAL-BASIN DEVELOPMENT,TRIASSIC ISCHIGUALASTO FORMATION, NW ARGENTINA

Guthrie, Kristin M. 05 August 2005 (has links)
No description available.
256

Development of a Watershed-Scale Water Resources Model for Old Woman Creek Watershed

Pinapatruni, Naveen January 2011 (has links)
No description available.
257

Performance of a Wet Weather Treatment Facility for Control of Combined Sewer Overflows

Szabo, Jeffrey Gillen 01 July 2003 (has links)
No description available.
258

INTEGRATED ASSESSMENT OF CLIMATE AND LAND USE CHANGE EFFECTS ON HYDROLOGY AND WATER QUALITY OF THE UPPER AND LOWER GREAT MIAMI RIVER

MAXIMOV, IVAN A. 04 September 2003 (has links)
No description available.
259

SPATIOTEMPORAL ANALYSIS OF THAW LAKES AND BASINS, BARROW PENINSULA, ARCTIC COASTAL PLAIN OF NORTHERN ALASKA

JONES, BENJAMIN M. 02 October 2006 (has links)
No description available.
260

The Effects of Circulating Aeration Systems On VOC Emissions from Aeration Basins

SUNDRUP, JASON PAUL January 2006 (has links)
No description available.

Page generated in 0.0326 seconds