• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 4
  • 1
  • 1
  • 1
  • Tagged with
  • 6
  • 6
  • 4
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • 2
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

A new method of pricing multi-options using Mellin transforms and integral equations

Vasilieva, Olesya January 2009 (has links)
<p>In this thesis a new method for the option pricing will be introduced with the help of the Mellin transforms. Firstly, the Mellin transform techniques for options on a single underlying stock is presented.After that basket options will be considered. Finally, an improvement of existing numerical results applied to Mellin transforms for 1-basket and 2-basket American Put Option will be discussed concisely. Our approach does not require either variable transformations or solving diffusion equations.</p> / thesis
2

A new method of pricing multi-options using Mellin transforms and integral equations

Vasilieva, Olesya January 2009 (has links)
In this thesis a new method for the option pricing will be introduced with the help of the Mellin transforms. Firstly, the Mellin transform techniques for options on a single underlying stock is presented.After that basket options will be considered. Finally, an improvement of existing numerical results applied to Mellin transforms for 1-basket and 2-basket American Put Option will be discussed concisely. Our approach does not require either variable transformations or solving diffusion equations. / thesis
3

Some topics in Mathematical Finance: Asian basket option pricing, Optimal investment strategies

Diallo, Ibrahima 06 January 2010 (has links)
This thesis presents the main results of my research in the field of computational finance and portfolios optimization. We focus on pricing Asian basket options and portfolio problems in the presence of inflation with stochastic interest rates. In Chapter 2, we concentrate upon the derivation of bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework.We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151–168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3–33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55–57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51–90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1–52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity In Chapter 3, we propose some moment matching pricing methods for European-style discrete arithmetic Asian basket options in a Black & Scholes framework. We generalize the approach of Curran M. (1994) [Valuing Asian and portfolio by conditioning on the geometric mean price”, Management science, 40, 1705-1711] and of Deelstra G., Liinev J. and Vanmaele M. (2004) [Pricing of arithmetic basket options by conditioning”, Insurance: Mathematics & Economics] in several ways. We create a framework that allows for a whole class of conditioning random variables which are normally distributed. We moment match not only with a lognormal random variable but also with a log-extended-skew-normal random variable. We also improve the bounds of Deelstra G., Diallo I. and Vanmaele M. (2008). [Bounds for Asian basket options”, Journal of Computational and Applied Mathematics, 218, 215-228]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity. In Chapter 4, we use the stochastic dynamic programming approach in order to extend Brennan and Xia’s unconstrained optimal portfolio strategies by investigating the case in which interest rates and inflation rates follow affine dynamics which combine the model of Cox et al. (1985) [A Theory of the Term Structure of Interest Rates, Econometrica, 53(2), 385-408] and the model of Vasicek (1977) [An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188]. We first derive the nominal price of a zero coupon bond by using the evolution PDE which can be solved by reducing the problem to the solution of three ordinary differential equations (ODE). To solve the corresponding control problems we apply a verification theorem without the usual Lipschitz assumption given in Korn R. and Kraft H.(2001)[A Stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40(4), 1250-1269] or [45].
4

亞式組合式選擇權之評價與分析_以基金連動債與匯率連結組合式商品為例

楊子逸 Unknown Date (has links)
平均式選擇權可以依計算方式分為算術平均及幾何平均兩種,不同於幾何平均式選擇權,算術平均式選擇權之評價並沒有封閉的公式解。此外,平均式選擇權也可依照摽的資產分為亞式選擇權與組合式選擇權,在過去的研究中較少將兩者類型同時考慮。因此,本論文結合現有的亞式選擇權及組合式選擇權之評價方式,推導出利用對數常態分配作為近似分配的亞式組合式選擇權近似封閉解。在本論文中再將此評價公式的結果與另一種近似封閉解作近似結果比較,證明出此推導結果能更精確且有效率的計算出平均式選擇權價格,並能利用此模型公式於平均式連動債券的評價與避險之中,最後再針對兩種連動債券的評價結果作發行商及投資人的策略分析。
5

Pricing methods for Asian options

Mudzimbabwe, Walter January 2010 (has links)
>Magister Scientiae - MSc / We present various methods of pricing Asian options. The methods include Monte Carlo simulations designed using control and antithetic variates, numerical solution of partial differential equation and using lower bounds.The price of the Asian option is known to be a certain risk-neutral expectation. Using the Feynman-Kac theorem, we deduce that the problem of determining the expectation implies solving a linear parabolic partial differential equation. This partial differential equation does not admit explicit solutions due to the fact that the distribution of a sum of lognormal variables is not explicit. We then solve the partial differential equation numerically using finite difference and Monte Carlo methods.Our Monte Carlo approach is based on the pseudo random numbers and not deterministic sequence of numbers on which Quasi-Monte Carlo methods are designed. To make the Monte Carlo method more effective, two variance reduction techniques are discussed.Under the finite difference method, we consider explicit and the Crank-Nicholson’s schemes. We demonstrate that the explicit method gives rise to extraneous solutions because the stability conditions are difficult to satisfy. On the other hand, the Crank-Nicholson method is unconditionally stable and provides correct solutions. Finally, we apply the pricing methods to a similar problem of determining the price of a European-style arithmetic basket option under the Black-Scholes framework. We find the optimal lower bound, calculate it numerically and compare this with those obtained by the Monte Carlo and Moment Matching methods.Our presentation here includes some of the most recent advances on Asian options, and we contribute in particular by adding detail to the proofs and explanations. We also contribute some novel numerical methods. Most significantly, we include an original contribution on the use of very sharp lower bounds towards pricing European basket options.
6

Some topics in mathematical finance: Asian basket option pricing, Optimal investment strategies

Diallo, Ibrahima 06 January 2010 (has links)
This thesis presents the main results of my research in the field of computational finance and portfolios optimization. We focus on pricing Asian basket options and portfolio problems in the presence of inflation with stochastic interest rates.<p><p>In Chapter 2, we concentrate upon the derivation of bounds for European-style discrete arithmetic Asian basket options in a Black and Scholes framework.We start from methods used for basket options and Asian options. First, we use the general approach for deriving upper and lower bounds for stop-loss premia of sums of non-independent random variables as in Kaas et al. [Upper and lower bounds for sums of random variables, Insurance Math. Econom. 27 (2000) 151–168] or Dhaene et al. [The concept of comonotonicity in actuarial science and finance: theory, Insurance Math. Econom. 31(1) (2002) 3–33]. We generalize the methods in Deelstra et al. [Pricing of arithmetic basket options by conditioning, Insurance Math. Econom. 34 (2004) 55–57] and Vanmaele et al. [Bounds for the price of discrete sampled arithmetic Asian options, J. Comput. Appl. Math. 185(1) (2006) 51–90]. Afterwards we show how to derive an analytical closed-form expression for a lower bound in the non-comonotonic case. Finally, we derive upper bounds for Asian basket options by applying techniques as in Thompson [Fast narrow bounds on the value of Asian options, Working Paper, University of Cambridge, 1999] and Lord [Partially exact and bounded approximations for arithmetic Asian options, J. Comput. Finance 10 (2) (2006) 1–52]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and time-to-maturity<p><p>In Chapter 3, we propose some moment matching pricing methods for European-style discrete arithmetic Asian basket options in a Black & Scholes framework. We generalize the approach of Curran M. (1994) [Valuing Asian and portfolio by conditioning on the geometric mean price”, Management science, 40, 1705-1711] and of Deelstra G. Liinev J. and Vanmaele M. (2004) [Pricing of arithmetic basket options by conditioning”, Insurance: Mathematics & Economics] in several ways. We create a framework that allows for a whole class of conditioning random variables which are normally distributed. We moment match not only with a lognormal random variable but also with a log-extended-skew-normal random variable. We also improve the bounds of Deelstra G. Diallo I. and Vanmaele M. (2008). [Bounds for Asian basket options”, Journal of Computational and Applied Mathematics, 218, 215-228]. Numerical results are included and on the basis of our numerical tests, we explain which method we recommend depending on moneyness and<p>time-to-maturity.<p><p>In Chapter 4, we use the stochastic dynamic programming approach in order to extend<p>Brennan and Xia’s unconstrained optimal portfolio strategies by investigating the case in which interest rates and inflation rates follow affine dynamics which combine the model of Cox et al. (1985) [A Theory of the Term Structure of Interest Rates, Econometrica, 53(2), 385-408] and the model of Vasicek (1977) [An equilibrium characterization of the term structure, Journal of Financial Economics, 5, 177-188]. We first derive the nominal price of a zero coupon bond by using the evolution PDE which can be solved by reducing the problem to the solution of three ordinary differential equations (ODE). To solve the corresponding control problems we apply a verification theorem without the usual Lipschitz assumption given in Korn R. and Kraft H.(2001)[A Stochastic control approach to portfolio problems with stochastic interest rates, SIAM Journal on Control and Optimization, 40(4), 1250-1269] or Kraft(2004)[Optimal Portfolio with Stochastic Interest Rates and Defaultable Assets, Springer, Berlin].<p><p><p> / Doctorat en Sciences / info:eu-repo/semantics/nonPublished

Page generated in 0.081 seconds