Spelling suggestions: "subject:"tat species"" "subject:"stat species""
1 |
Geographic variation in the phenotype of an African horseshoe bat species, Rhinolophus damarensis, (Chiroptera: Rhinolophidae)Maluleke, Tinyiko 24 August 2018 (has links)
Studies involving geographic variation in the phenotypes of bats help scientists to explain why these mammals are the most species rich mammalian order second only to rodents, with well more than 1 300 species occurring worldwide. Such species richness or high diversity is the manifestation of the generation of biodiversity through the splitting of lineages within bat species. A lineage of bat species can diversify into several lineages which then differentiate from each other in allopatry. Thus, the spatial separation of a lineage into several lineages could be attributed to geographical, ecological and environmental factors across the distributional range of the species. Similarly, vicariant events may also play a role in separating lineages within species. The Damara horseshoe bat species, Rhinolophus damarensis, is widely distributed but restricted to the western half of southern Africa, where it occurs across several major biomes. Formerly regarded as the subspecies, R. darlingi damarensis, it was elevated to full species status on the basis of genetic and phenotypic differences between it and R. darlingi darlingi. Rhinolophus damarensis is itself made up of two ecologically separated genetic lineages. A total of 106 individuals of R. damarensis were sampled from seven localities across its distributional range, with a view to determining and documenting the extent of geographic variation in body size, echolocation parameters, wing parameters, cranial shape and postcranial morphology of individuals from populations of R. damarensis across the distributional range of the species. Firstly, an investigation into geographic variation in resting echolocation frequency (RF) of the horseshoe bat species, R. damarensis was carried out in the western half of southern Africa (Chapter 2). Three hypotheses were tested. The first one, James’Rule (JR), states that individuals occurring in hot humid environments generally have smaller body sizes than conspecifics that occur in cooler, dryer environments, and the largest are expected to occur in cool, dry areas. On this basis and because of the known relationship between body size and RF, it was predicted that there should be a correlation between body size and climatic factors and between body size and RF. The second hypothesis was Isolation by Environment (IbE) mediated through sensory drive, which proposes that diversification of lineage may be driven by environmentally-mediated differences in sensory systems. Under this hypothesis, it was predicted that call frequency variation should be correlated with climatic variables. The third hypothesis was that Isolation by Distance (IbD) can influence phenotypic trait variation by restricting gene flow between populations. Under the Isolation by Distance (IbD) Hypothesis, it was predicted that call frequency variation should be partitioned in accordance with geographic distance between populations. To investigate the probability of the JR, IbE and IbD, the Akaike’s information criterion AICc candidate models were evaluated with different combinations of environmental (annual mean temperature and relative humidity), spatial (latitude and region) and biological (forearm as a proxy for body size) predictor variables to determine their influence on resting frequency (RF) across the distributional range of R. damarensis. Linear mixed effects models (LMEs) were employed to analyse the relationship between the response variable (RF) and the environmental, spatial and biological predictor variables. The influence of prey detection range and atmospheric attenuation was also investigated. The results showed no evidence for JR or for random genetic drift. Body size was neither correlated with RF nor environmental variables, suggesting that variation in RF was not the result of concomitant variation in body size as proposed by JR. Similarly, the Mantel test showed no IbD effect and there was therefore no evidence that genetic drift was responsible for the variation in RFs. In contrast, the LMEs showed that there was support for IbE in the form of an association between RF and region (in the form of the variable “Reg”) which was based on the two geographically separated genetic lineages. Furthermore, RF variation was also associated with the climatic variable AMT. The taxonomic status of R. damarensis was investigated using ecological traits and phenotypic characters including skulls, wings and echolocation (Chapter 3) and three dimensional (3D) scanned skulls and mandibles (Chapter 4). The main objective (Chapter 3 and Chapter 4) was to test whether previously reported genetic divergence between the two R. damarensis lineages was associated with phenotypic divergence. Morphometric and echolocation measurements were taken from hand held individual bats in the field, and skull measurements were taken from field collected voucher specimens as well as museum specimens. Discriminant Function Analyses (DFA) revealed that there was geographic variation among populations and lineages of R. damarensis. Multivariate Linear Regressions (MLV) and Linear models (LM) on the basal parts of bacula revealed significant differences between the southern and northern lineages of R. damarenis. The bacula of the two lineages of R. damarensis appear to have different shapes. Diversification through shape analyses (Chapter 4) was investigated using three dimensional (3D) geometric morphometric analyses based on X-ray microcomputed tomography (µCT) scanning of dried skulls and mandibles of R. damarensis. Procrustes Anova results of both mandibles and skulls indicated that there were no significant differences between sexes but that the shape of skulls and mandibles varied across different localities (Chapter 4). Canonical Variate Analysis (CVA) suggested that geographic variation in R. damarensis mandibles was based on the shape and thickness of the alveolar bone. Geographic variation in the skulls was based on changes in the rostrum, anterior medial swelling and brain case. Some populations had slightly deeper rostra, slightly larger anterior medial swellings and smaller braincases, whilst others had slightly shallower rostra, slightly smaller anterior medial swellings and larger braincases. The northern lineage was found to be separated from the southern lineage based on the changes in skull and mandible shape. Therefore, separation of lineages within R. damarensis (Chapter 4) could be associated with the foraging and feeding behaviour of the species under different ecological conditions due to ecological opportunity. Overall, differences in the RF were found to be associated with Isolation by Environment mediated through sensory drive and this has led to the formation of two regional (northern and southern) groupings in RF (Chapter 2). The two lineages were supported by both the phenotypic divergence (Chapter 3) and shape variation within R. damarensis skulls and mandibles (Chapter 4). Thus, phenotypic differences corresponded to genetic differences between the two lineages and provide support for IbE.
|
2 |
Bat species richness and activity in forest habitats close to lakes versus far from lakes, in SwedenZuniga, Silvia January 2013 (has links)
The long-term effects of large-scale changes in forestry, agriculture and other land use on habitats and the large-scale expansion of wind farming affects bats foraging environments. In order to predict consequences of exploitations on local bat species and populations, good surveys are important. To get good background information for an Environmental Impact Assessment (EIA) it is crucial to rapidly assess which areas are most important for bats. The aim of this work was to measure the importance of the two types of forest environment for bats foraging : forest areas located close to or far from the lakes. Bat activity and species diversity was measured with automatic ultrasound recorders in 211 nights of fieldwork at 155 locations in 23 areas in different parts of Sweden during June, July and the first two weeks of August 2011 and 2012. A total of 11 species were recorded in forest far from lakes and 8 species in forest close to lakes. Eptesicus nilssonii , Myotis sp. and Pipistrellus pygmaeus were the most common taxa in both habitat types. Activity levels were higher in the vicinity of lakes compared to forests far away from lakes. Species diversity calculated on base on Chao 2 was similar for both types of habitats . The results suggest that the forests close to lakes are the most important habitats to surveys for bats in Sweden and that inventory efforts should be primarily invested in them.
|
3 |
Influence of landscape scale and habitat distribution on individual bat species and bat species richnessBrüsin, Martin January 2013 (has links)
Habitat fragmentation is one of the most important factors affecting species extinction and biodiversity loss, Species habitat response expects to differ with habitat feature at different spatial scales and this study was to identify how bat diversity and individual bat species respond to different habitat amounts. The local bat species richness was observed in 156 different locations in Östergötland and the proportion of different habitats were calculated for circular areas with diameters ranging from 400 m. to 12 km. from each location. Although we found that the individual bat species responded differently to the amount of each habitat at different spatial scales, the bat species richness showed a decreasing response with increasing spatial scale. The strongest response of bat species richness to habitat characteristics was at a scale of 939 m.
|
4 |
Thermoregulation in three southern African bat species inhabiting a hot, semi-arid environmentCory Toussaint, Dawn 13 May 2013 (has links)
Bats inhabiting arid, subtropical environments face diverse challenges related to energy and water balance. First, they may have to conserve water and energy during cool, dry winters when water is scarce and insect availability reduced. Second, during hot summers when air temperature may routinely exceed body temperature, bats may need to avoid both hyperthermia and dehydration. A common response to the energetically challenging winter period in temperate, subtropical and tropical species is heterothermy (i.e. torpor and hibernation). Despite evidence suggesting that heterothermy is of major significance in the energy balance of tropical and subtropical bats, its occurrence in southern African species especially those in semi-arid subtropical regions have received relatively little attention. Moreover, the physiological and thermoregulatory responses of bats to high air temperatures (Ta) are relatively poorly known. The goal of my project was to investigate various seasonal physiological challenges imposed on bats in an arid, sub-tropical climate. I investigated the occurrence of winter heterothermy in Nycteris thebaica (Nycteridae) in the Limpopo Valley. Skin temperatures (Tskin) were measured using temperature-sensitive transmitters, and roost temperatures (Troost) were recorded using miniature temperature loggers. N. thebaica used multiple roosting sites, including a hollow baobab tree (Adansonia digitata) and several caves, and exhibited only moderate heterothermy. Tskin was maintained around normothermic levels, with differences of 3-9°C (7.5±1.7°C) between overall maximum and minimum Tbs. A minimum Tskin of 28.4°C occurred at Troost = 23.8°C, and patterns of thermoregulation did not appear to be influenced by prevailing weather conditions. Roost temperatures did not decrease below 10°C, and averaged 21.2±2.8°C and 23.3±2.9°C respectively. The lack of pronounced heterothermy in N. thebaica is surprising, particularly in view of the daily torpor cycles observed in many insectivorous bat species. I also investigated the physiological responses of three sympatric bat species during summer using an open-flow respirometry system to measure resting metabolic rates (RMR) and evaporative water loss (EWL) over a range of Tas ~ 10-42°C, with body temperatures (Tb) simultaneously recorded via temperature-sensitive passive integrated transponder (PIT) tags. Basal metabolic rates for Nycteris thebaica and Taphozous mauritianus were 8.9±2.7mW.g-1 and 6.6±2.2mW.g-1 respectively, falling within the 95% prediction intervals for bat BMR, whereas the value for Sauromys petrophilus (3.4±0.6mW.g-1) fell below the lower 95% prediction interval. Maximum EWL for N. thebaica, T. mauritianus and S. petrophilus were 18.6±2.1mg.g-1.h-1 (Ta=39.4°C), 14.7±3.1mg.g-1.h-1 (Ta=41.9°C) and 23.7±7.4mg.g-1.h-1 (Ta=41.7°C) respectively. Maximum individual Tbs recorded were 46.5°C in N. thebaica (Ta=39.3°C), 44.9°C in T. mauritianus (Ta=41.8°C) and 46.5°C in S. petrophilus (Ta=41.7°C). Overall, I found that N. thebaica was the least heat tolerant species, with T. mauritianus and S. petrophilus being more heat tolerant. In the face of climate change, heat tolerance together with specific thermal properties of a given roost may play a major role in the ability of a species to persist in a hot, arid environment. / Dissertation (MSc)--University of Pretoria, 2012. / Zoology and Entomology / unrestricted
|
5 |
Bat species diversity and habitat use assessment with focus on endangered Indiana bats in the Wright State University woods.Rude, Megan R. 04 September 2019 (has links)
No description available.
|
6 |
Birds, bats and arthropods in tropical agroforestry landscapes: Functional diversity, multitrophic interactions and crop yieldMaas, Bea 20 November 2013 (has links)
No description available.
|
Page generated in 0.0464 seconds