• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 12
  • 6
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 8
  • 6
  • 6
  • 6
  • 5
  • 5
  • 5
  • 5
  • 5
  • 4
  • 4
  • 4
  • 4
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Destilação em batelada de aroma natural de caju e oleo essencial de manjericão : investigação via simulação computacional / Batch distillation of cashew flavor and basil essential oil : an investigation through computer simulation

Scanavini, Helena Finardi Alvares 16 May 2006 (has links)
Orientadores: Antonio Jose de Almeida Meirelles, Luiz Fernando de Lima Luz Junior / Dissertação (mestrado) - Universidade Estadual de Campinas, Faculdade de Engenharia de Alimentos / Made available in DSpace on 2018-08-08T15:25:45Z (GMT). No. of bitstreams: 1 Scanavini_HelenaFinardiAlvares_M.pdf: 3144443 bytes, checksum: f6733d6ff56270059b3021e96e08e996 (MD5) Previous issue date: 2006 / Resumo: O aroma de um alimento é o resultado da combinação de diversas substâncias voláteis, de diferentes classes químicas, sendo que nenhuma delas é individualmente responsável pelo aroma, mas sim a combinação entre elas. Atualmente, os aromatizantes são amplamente utilizados na indústria alimentícia, seja para conferir um determinado aroma a um produto, ou para reforçar o aroma característico já existente, como de um suco, por exemplo. A concentração de sucos de frutas reduz o volume, sendo importante para o armazenamento, embalagem e transporte. Porém, durante o processo convencional de concentração, a maioria dos componentes aromatizantes é perdida, sendo necessário recuperar a fração aromatizante do suco de fruta durante a concentração. Existem vários processos utilizados para a recuperação de aroma e concentração de suco. O aroma concentrado pode, então, ser reincorporado no suco concentrado para obter uma bebida com aroma natural e característico da fruta. O mercado internacional tem demonstrado grande interesse nos sucos de frutas tropicais, entretanto parcela das indústrias nacionais ainda não alcançou desenvolvimento tecnológico para competir em um mercado no qual os produtos obtidos devem apresentar certas características de qualidade. No caso do óleo essencial de manjericão, ele tem atraído a atenção de pesquisadores por possuir grande quantidade de linalol, uma substância de largo emprego na indústria de aromas e perfumes, também encontrada no pau-rosa, árvore amazônica em extinção. Assim, neste trabalho foram estudadas, através da simulação computacional, condições operacionais e construtivas (número de estágios) de colunas de destilação em batelada de aroma natural de caju e de óleo essencial de manjericão. No caso do aroma natural de caju, foram investigadas as condições que garantissem uma maior recuperação dos compostos voláteis desejáveis, para serem reincorporados ao suco concentrado ou utilizados na formulação de outros produtos alimentícios e também a purificação deste aroma em relação ao ácido 2-metil butanóico, considerável indesejável, devido ao seu odor desagradável. Enquanto que para o óleo essencial de manjericão, foram estudadas as melhores condições para o fracionamento de seus componentes de maior interesse comercial, visando a obtenção destes com o maior grau de pureza possível, para a utilização pela indústria alimentícia, de perfumaria ou farmacêutica / Abstract: The flavor is a combination of some volatile substances, of different chemical classes. However none of them is individually responsible for a specific flavor, but a combination of them. Nowadays flavor compounds are widely used in the food industry, either to confer one definitive flavor to a product, or to strengthen an existing characteristic flavor, as of a juice, for example. The fruit juice concentration reduces the volume, being important to the storage, packing and transportation. However, during the conventional concentration process, the majority of the flavor components is lost, being necessary to recover the juice flavor fraction lost during the concentration. There are some information of different processes used for the flavor recovery and juice concentration. The concentrated flavor can then be reintroduced in the concentrated juice to get a beverage with the natural and characteristic flavor of the fruit. The international market has demonstrated a great interest in tropical fruit juices. However, a share of the domestic industries still has not developed technologies to compete in a market in which the products must present certain quality characteristics. In the case of the essential oil of basil, it has attracted the attention of researchers for containing a large amount of linalool, a substance with high ability of setting odors, also found in the wood-rose, an Amazonian tree in extinguishing. Therefore, in this work, it had been studied, through computer simulation, operational and design conditions of a batch distillation column of the natural flavor of cashew fruit and essential oil of basil. In the case of the cashew natural flavor, it was investigated the conditions that guarantee a larger recovery of desirable volatile compounds, to be reintroduced to the concentrated juice or used in the formulation of other nourishing products and also the purification of this flavor in relation to the 2-methylbutanoic acid, considered undesirable and of unpleasant odor. For the essential oil of basil, the best conditions for the purification of its components of larger commercial interest had been studied, aiming at obtaining them with the largest degree of possible purity, for the nourishing, cosmetic or pharmaceutical industry uses / Mestrado / Mestre em Engenharia de Alimentos
22

New Double-Column Systems for Batch Heteroazeotropic Distillation / Nouveaux systèmes de double colonne pour distillation hétéroazéotropique discontinue

Dénes, Ferenc 13 November 2012 (has links)
J'ai étudié deux nouvelles configurations de double-colonne pour distillation hétéroazéotropique. Ces configurations sont appropriées à la récupération simultanée des composants des mélanges binaires hétéroazéotropiques et homoazéotropiques (en utilisant un tiers corps (entraîneur)). Elle sont opérées en système fermé, c'est-à-dire, il n'y a pas de soutirage de produit continu. D'abord, en appliquant un modèle simplifié, j'ai étudié la faisabilité de la séparation d'un mélange hétéroazéotropique (1-butanol – eau), puis celle d'un mélange homoazéotropique (2-propanol – eau) aidé par entraîneur benzène ou cyclohexane, en utilisant le SDC. Puis, j'ai étudié cette configuration par modélisation rigoureuse, en appliquant le simulateur dynamique du logiciel professionnel ChemCAD (CC-DColumn). J'ai comparé la nouvelle configuration avec le RD, sur la base des résultats obtenus par toutes les deux méthodes d'étude. Le SDC s'est avéré faisable et compétitif avec le RD : pendant la même durée ou plus courte, les rendements des composants ont été plus élevés. Puis, on a étendu le SDC à un système plus flexible (système de double-colonne généralisé, SDCG) qui est approprié à la séparation des mélanges binaires homoazéotropiques aidé par entraîneur (en le cas présent : cyclohexane ou n-hexane). J'ai étendu la méthode de faisabilité aussi à l'étude de cette configuration. Le SDCG s'est avéré aussi faisable. En appliquant modélisation rigoureuse, j'ai étudié les effets des nouveaux paramètres opératoires sur la durée, et j'ai comparé le DCG avec le SDC. Le SDCG s'est avéré encore plus avantageux que le SDC : la durée a été plus courte, et les besoins spécifiques d'énergie des produits ont été plus bas. J'ai étudié le SDC et le SDCG aussi par des manipulations exécutées sur installations de taille laboratoire et pilote. D'abord, j'ai fait des manipulations laboratoires pour la séparation du mélange binaire hétéroazéotropique, en utilisant une installation en verre qui a été opérée aussi comme RD et SDC. Le SDC s'est avéré faisable et compétitif avec le RD aussi sur la base des résultats de ces manipulations : pendant la même durée, les rendements des tous les deux composants ont été plus élevés. Puis, en utilisant l'installation pilote comme SDC, j'ai étudié la séparation ci-dessus. Après cette manipulation, j'ai étudié la séparation du mélange binaire homoazéotropique en appliquant n-hexane comme entraîneur, en opérant le système comme RD et SDCG. La manipulation faite avec le SDCG a montré que la production simultanée de deux composants est faisable avec cette configuration. / Distillation is the method the most frequently applied for the separation of liquid mixtures, e.g. for the recovery of the components of the waste solvent mixtures. Because of the high energy demand of these processes the optimal design and operation of the distillation equipments are important from economic and also environmental points of view. The separation of the azeotropic mixtures needs special distillation methods like heteroazeotropic distillation. In the pharmaceutical and fine chemical industries it is often applied in batch mode. The aims of the thesis are to study the feasibility of a new Double-Column System (DCS) for batch heteroazeotropic distillation and to compare it with the traditional Batch Rectifier (BR) equipped with a decanterto study the above configurations by rigorous simulationto extend the DCS (Generalised Double-Column System, GDCS) and to study this new configuration by the above methodsto do laboratory experiments for both configurations in order to prove the feasibility of the separation and validate the calculations, respectively. Two new double-column configurations for batch heteroazeotropic distillation were studied. These configurations are designed to produce simultaneously the components of binary heteroazeotropic and homoazeotropic mixtures (by using an entrainer). They are operated in closed system (without continuous product withdrawal). First the feasibility of the separation of a heteroazeotropic mixture (1-butanol – water) and that of a homoazeotropic one by using an entrainer (isopropanol – water + benzene or cyclohexane) in the DCS were investigated by a simplified model. Then the operation of this configuration was modelled by rigorous simulation by using the dynamic simulator of the professional flowsheet simulator ChemCAD (CC-DColumn). On the basis of the results obtained by both methods the new configuration was compared with the BR. The DCS proved to be feasible and competitive with the BR: during the same or shorter time the recoveries of the components were higher. Then the DCS was extended to a more flexible version (Generalised Double-Column System, GDCS), which is suitable for the separation of binary homoazeotropic mixtures (by using an entrainer, in this work: cyclohexane or n- exane). The feasibility method was extended for the study of this configuration, as well. The GDCS proved to be feasible. Then the effects of its additional operational parameters on the duration were studied by rigorous simulation. The GDCS was compared with the DCS by rigorous simulation, as well. The GDCS proved to be more advantageous than the DCS: the duration was shorter and the specific energy demands of the products were lower. The DCS and GDCS were also investigated by laboratory and pilot plant experiments. First laboratory experiments were done for the separation of the binary heteroazeotropic mixture in a simple small size glass equipment operated as BR and DCS. The DCS proved to be feasible and competitive with the BR also on the basis of the results of these experiments: during the same time the recovery of both components were higher. Then a pilot plant was used for the same separation as a DCS. After this experiment the separation of the binary homoazeotropic mixture by using n-hexane as entrainer was studied in the equipment operated as BR and GDCS. The experiment showed that the simultaneous production of two components is feasible also in the GDCS.
23

Improvement of Batch Distillation Separation of Azeotropic Mixtures / Amélioration de la séparation distillation discontinue des mélanges azéotropiques

Hegely, Laszlo 15 November 2013 (has links)
La distillation est le procédé de séparation le plus répandu dans l'industrie chimique. Pour la séparation des mélanges azéotropiques, une méthode spéciale de distillation doit être appliquée. Le but de mon travail était d'améliorer la séparation des mélanges azéotropiques par distillation discontinue (DD). Un nouvel algorithme a été présenté pour la détermination de la séquence des produits de DD pour des mélanges multicomposants azéotropiques. Contrairement aux méthodes publiées précédemment, cet algorithme n'a pas besoin des paramètres d'équilibre. Configurations non-conventionnelles de DD ont été étudiées par simulation rigoureuse avec un accent sur l'opération fermée. Nombreux modes d'opération fermés étaient proposés, lesquelles diffèrent en l'opération de réservoir supérieur. Les effets du recyclage des fractions sur un procédé de séparation existant de 6 lots d'un mélange déchet azéotropique ont été étudiés. Les études ont été étendues pour un procédé de distillation extractive discontinue (DED). Un volume minimal de pré-fraction doit être incinéré. Le cas optimal de DED a donné un profit plus grand que celui de DD. DED a été étudié pour la séparation des deux mélanges azéotropiques. La séparation a été infaisable ou le rendement a été bas par DD, mais DED et le procédé hybride ont donné des rendements élevés. Une nouvelle politique de DED a été aussi proposée. Un modèle généralisé de la distillation hétéroazéotropique discontinue avec une rétention variable de décanteur a été développé. Dans une analyse de faisabilité, toutes les politiques opérationnelles possibles ont été identifiées. Ce modèle a été étendu pour la distillation extractive hétérogène discontinue. / Distillation is the most widespread method for separating liquid mixtures. The separation of azeotropic mixtures requires a special distillation method. My aim was to improve the batch distillation separation of azeotropic mixtures. A new algorithm was presented for the determination of product sequences of batch distillation of multicomponent azeotropic mixtures. Non-conventional configurations were studied by simulation with emphasis on closed operation. The effects of off-cut recycle on a six-batch separation process of a waste solvent mixture were also investigated. Batch extractive distillation was studied for the separation of two azeotropic mixtures. A new extractive policy was also proposed. A generalised model of batch heteroazeotropic distillation with variable decanter hold-up was developed. This model was extended for batch heterogeneous extractive distillation.
24

Design of a solvent recovery system in a pharmaceutical manufacturing plant / Utformning av en lösningsmedelsåtervinningssystem i en läkemedelsfabrik

BHANDARI, SHASHANK January 2016 (has links)
Solvents play a crucial role in the Active Pharmaceutical Ingredient (API) manufacturing and are used in large quantities. Most of the industries incinerate the waste solvents or send it to waste management companies for destruction to avoid waste handling and cross-contamination. It is not a cost effective method and also hazardous to the environment. This study has been performed at AstraZeneca’s API manufacturing plant at Sodertalje, Sweden. In order to find a solution, a solvent recovery system is modeled and simulated using ASPEN plus and ASPEN batch modeler. The waste streams were selected based on the quantity and cost of the solvents present in them. The solvent mixture in the first waste stream was toluene-methanol in which toluene was the key-solvent whereas in the second waste stream, isooctane-ethyl acetate was the solvent mixture in which isooctane was the key-solvent. The solvents in the waste stream were making an azeotrope and hence it was difficult to separate them using conventional distillation techniques. Liquid-Liquid Extraction with water as a solvent followed by batch distillation was used for the first waste stream and Pressure Swing Distillation was used for the second waste stream. The design was optimized based on cost analysis and was successful to deliver 96.1% toluene recovery with 99.5% purity and 83.6% isooctane recovery with 99% purity. The purity of the solvents was decided based on the quality conventions used at AstraZeneca so that it can be recovered and recycled in the same system. The results were favorable with a benefit of €335,000 per year and preventing nearly one ton per year carbon dioxide emissions to the environment. A theoretical study for the recovery system of toluene-methanol mixture was performed. The proposed design was an integration of pervaporation to the batch distillation. A blend of polyurethane / poly(dimethylsiloxane) (PU / PDMS) membrane was selected for the separation of methanol and toluene mixture. The results of preliminary calculations show 91.4% toluene recovery and 72% methanol recovery with desired purity.

Page generated in 0.1337 seconds