Spelling suggestions: "subject:"bayerfilter"" "subject:"bayesianfilter""
1 |
Myoelectric Signal Processing for Prosthesis ControlHofmann, David 05 February 2014 (has links)
No description available.
|
2 |
Predicting Plans and Actions in Two-Player Repeated GamesMathema, Najma 22 September 2020 (has links)
Artificial intelligence (AI) agents will need to interact with both other AI agents and humans. One way to enable effective interaction is to create models of associates to help to predict the modeled agents' actions, plans, and intentions. If AI agents are able to predict what other agents in their environment will be doing in the future and can understand the intentions of these other agents, the AI agents can use these predictions in their planning, decision-making and assessing their own potential. Prior work [13, 14] introduced the S# algorithm, which is designed as a robust algorithm for many two-player repeated games (RGs) to enable cooperation among players. Because S# generates actions, has (internal) experts that seek to accomplish an internal intent, and associates plans with each expert, it is a useful algorithm for exploring intent, plan, and action in RGs. This thesis presents a graphical Bayesian model for predicting actions, plans, and intents of an S# agent. The same model is also used to predict human action. The actions, plans and intentions associated with each S# expert are (a) identified from the literature and (b) grouped by expert type. The Bayesian model then uses its transition probabilities to predict the action and expert type from observing human or S# play. Two techniques were explored for translating probability distributions into specific predictions: Maximum A Posteriori (MAP) and Aggregation approach. The Bayesian model was evaluated for three RGs (Prisoners Dilemma, Chicken and Alternator) as follows. Prediction accuracy of the model was compared to predictions from machine learning models (J48, Multi layer perceptron and Random Forest) as well as from the fixed strategies presented in [20]. Prediction accuracy was obtained by comparing the model's predictions against the actual player's actions. Accuracy for plan and intent prediction was measured by comparing predictions to the actual plans and intents followed by the S# agent. Since the plans and the intents of human players were not recorded in the dataset, this thesis does not measure the accuracy of the Bayesian model against actual human plans and intents. Results show that the Bayesian model effectively models the actions, plans, and intents of the S# algorithm across the various games. Additionally, the Bayesian model outperforms other methods for predicting human actions. When the games do not allow players to communicate using so-called cheaptalk, the MAP-based predictions are significantly better than Aggregation-based predictions. There is no significant difference in the performance of MAP-based and Aggregation-based predictions for modeling human behavior when cheaptalk is allowed, except in the game of Chicken.
|
3 |
Erhöhung der Qualität und Verfügbarkeit von satellitengestützter Referenzsensorik durch Smoothing im PostprocessingBauer, Stefan 02 February 2013 (has links) (PDF)
In dieser Arbeit werden Postprocessing-Verfahren zum Steigern der Genauigkeit und Verfügbarkeit satellitengestützer Positionierungsverfahren, die ohne Inertialsensorik auskommen, untersucht. Ziel ist es, auch unter schwierigen Empfangsbedingungen, wie sie in urbanen Gebieten herrschen, eine Trajektorie zu erzeugen, deren Genauigkeit sie als Referenz für andere Verfahren qualifiziert. Zwei Ansätze werdenverfolgt: Die Verwendung von IGS-Daten sowie das Smoothing unter Einbeziehung von Sensoren aus der Fahrzeugodometrie. Es wird gezeigt, dass durch die Verwendung von IGS-Daten eine Verringerung des Fehlers um 50% bis 70% erreicht werden kann. Weiterhin demonstrierten die Smoothing-Verfahren, dass sie in der Lage sind, auch unter schlechten Empfangsbedingungen immer eine Genauigkeit im Dezimeterbereich zu erzielen.
|
4 |
Untersuchungen zur kooperativen Fahrzeuglokalisierung in dezentralen SensornetzenObst, Marcus 05 February 2009 (has links) (PDF)
Die dynamische Schätzung der Fahrzeugposition durch Sensordatenfusion ist
eine der grundlegenden Aufgaben für moderne Verkehrsanwendungen wie zum
Beispiel fahrerlose Transportsysteme oder Pre-Crash-Sicherheitssysteme.
In dieser Arbeit wird ein Verfahren zur dezentralen kooperativen
Fahrzeuglokalisierung vorgestellt, das auf einer allgemeinen Methode zur
Fusion von Informationen mehrerer Teilnehmer beruht. Sowohl die lokale
als auch die übertragene Schätzung wird durch Partikel dargestellt.
Innerhalb einer Simulation wird gezeigt, dass sich die
Positionsschätzung der einzelnen Teilnehmer im Netzwerk im Vergleich zu
einer reinen GPS-basierten Lösung verbessert.
|
5 |
Detekce aktuálního podlaží při jízdě výtahem / Floor detection during elevator rideHavelka, Martin January 2021 (has links)
This diploma thesis deals with the detection of the current floor during elevator ride. This functionality is necessary for robot to move in multi-floor building. For this task, a fusion of accelerometric data during the ride of the elevator and image data obtained from the information display inside the elevator cabin is used. The research describes the already implemented solutions, data fusion methods and image classification options. Based on this part, suitable approaches for solving the problem were proposed. First, datasets from different types of elevator cabins were obtained. An algorithm for working with data from the accelerometric sensor was developed. A convolutional neural network, which was used to classify image data from displays, was selected and trained. Subsequently, the data fusion method was implemented. The individual parts were tested and evaluated. Based on their evaluation, integration into one functional system was performed. System was successfully verified and tested. Result of detection during the ride in different elevators was 97%.
|
6 |
Parking Map Generation and Tracking Using Radar : Adaptive Inverse Sensor Model / Parkeringskartagenerering och spårning med radarMahmoud, Mohamed January 2020 (has links)
Radar map generation using binary Bayes filter or what is commonly known as Inverse Sensor Model; which translates the sensor measurements into grid cells occupancy estimation, is a classical problem in different fields. In this work, the focus will be on development of Inverse Sensor Model for parking space using 77 GHz FMCW (Frequency Modulated Continuous Wave) automotive radar, that can handle different environment geometrical complexity in a parking space. There are two main types of Inverse Sensor Models, where each has its own assumption about the sensor noise. One that is fixed and is similar to a lookup table, and constructed based on combination of sensor-specific characteristics, experimental data and empirically-determined parameters. The other one is learned by using ground truth labeling of the grid map cell, to capture the desired Inverse Sensor Model. In this work a new Inverse Sensor Model is proposed, that make use of the computational advantage of using fixed Inverse Sensor Model and capturing desired occupancy estimation based on ground truth labeling. A derivation of the occupancy grid mapping problem using binary Bayes filtering would be performed from the well known SLAM (Simultaneous Localization and Mapping) problem, followed by presenting the Adaptive Inverse Sensor Model, that uses fixed occupancy estimation but with adaptive occupancy shape estimation based on statistical analysis of the radar measurements distribution across the acquisition environment. A prestudy of the noise nature of the radar used in this work is performed, to have a common Inverse Sensor Model as a benchmark. Then the drawbacks of such Inverse Sensor Model would be addressed as sub steps of Adaptive Inverse Sensor Model, to be able to haven an optimal grid map occupancy estimator. Finally a comparison between the generated maps using the benchmark and the adaptive Inverse Sensor Model will take place, to show that under the fulfillment of the assumptions of the Adaptive Inverse Sensor Model, the Adaptive Inverse Sensor Model can offer a better visual appealing map to that of the benchmark.
|
7 |
Erhöhung der Qualität und Verfügbarkeit von satellitengestützter Referenzsensorik durch Smoothing im PostprocessingBauer, Stefan 08 November 2012 (has links)
In dieser Arbeit werden Postprocessing-Verfahren zum Steigern der Genauigkeit und Verfügbarkeit satellitengestützer Positionierungsverfahren, die ohne Inertialsensorik auskommen, untersucht. Ziel ist es, auch unter schwierigen Empfangsbedingungen, wie sie in urbanen Gebieten herrschen, eine Trajektorie zu erzeugen, deren Genauigkeit sie als Referenz für andere Verfahren qualifiziert. Zwei Ansätze werdenverfolgt: Die Verwendung von IGS-Daten sowie das Smoothing unter Einbeziehung von Sensoren aus der Fahrzeugodometrie. Es wird gezeigt, dass durch die Verwendung von IGS-Daten eine Verringerung des Fehlers um 50% bis 70% erreicht werden kann. Weiterhin demonstrierten die Smoothing-Verfahren, dass sie in der Lage sind, auch unter schlechten Empfangsbedingungen immer eine Genauigkeit im Dezimeterbereich zu erzielen.
|
8 |
The memory-based paradigm for vision-based robot localizationJüngel, Matthias 04 October 2012 (has links)
Für mobile autonome Roboter ist ein solides Modell der Umwelt eine wichtige Voraussetzung um die richtigen Entscheidungen zu treffen. Die gängigen existierenden Verfahren zur Weltmodellierung basieren auf dem Bayes-Filter und verarbeiten Informationen mit Hidden Markov Modellen. Dabei wird der geschätzte Zustand der Welt (Belief) iterativ aktualisiert, indem abwechselnd Sensordaten und das Wissen über die ausgeführten Aktionen des Roboters integriert werden; alle Informationen aus der Vergangenheit sind im Belief integriert. Wenn Sensordaten nur einen geringen Informationsgehalt haben, wie zum Beispiel Peilungsmessungen, kommen sowohl parametrische Filter (z.B. Kalman-Filter) als auch nicht-parametrische Filter (z.B. Partikel-Filter) schnell an ihre Grenzen. Das Problem ist dabei die Repräsentation des Beliefs. Es kann zum Beispiel sein, dass die gaußschen Modelle beim Kalman-Filter nicht ausreichen oder Partikel-Filter so viele Partikel benötigen, dass die Rechendauer zu groß wird. In dieser Dissertation stelle ich ein neues Verfahren zur Weltmodellierung vor, das Informationen nicht sofort integriert, sondern erst bei Bedarf kombiniert. Das Verfahren wird exemplarisch auf verschiedene Anwendungsfälle aus dem RoboCup (autonome Roboter spielen Fußball) angewendet. Es wird gezeigt, wie vierbeinige und humanoide Roboter ihre Position und Ausrichtung auf einem Spielfeld sehr präzise bestimmen können. Grundlage für die Lokalisierung sind bildbasierte Peilungsmessungen zu Objekten. Für die Roboter-Ausrichtung sind dabei Feldlinien eine wichtige Informationsquelle. In dieser Dissertation wird ein Verfahren zur Erkennung von Feldlinien in Kamerabildern vorgestellt, das ohne Kalibrierung auskommt und sehr gute Resultate liefert, auch wenn es starke Schatten und Verdeckungen im Bild gibt. / For autonomous mobile robots, a solid world model is an important prerequisite for decision making. Current state estimation techniques are based on Hidden Markov Models and Bayesian filtering. These methods estimate the state of the world (belief) in an iterative manner. Data obtained from perceptions and actions is accumulated in the belief which can be represented parametrically (like in Kalman filters) or non-parametrically (like in particle filters). When the sensor''s information gain is low, as in the case of bearing-only measurements, the representation of the belief can be challenging. For instance, a Kalman filter''s Gaussian models might not be sufficient or a particle filter might need an unreasonable number of particles. In this thesis, I introduce a new state estimation method which doesn''t accumulate information in a belief. Instead, perceptions and actions are stored in a memory. Based on this, the state is calculated when needed. The system has a particular advantage when processing sparse information. This thesis presents how the memory-based technique can be applied to examples from RoboCup (autonomous robots play soccer). In experiments, it is shown how four-legged and humanoid robots can localize themselves very precisely on a soccer field. The localization is based on bearings to objects obtained from digital images. This thesis presents a new technique to recognize field lines which doesn''t need any pre-run calibration and also works when the field lines are partly concealed and affected by shadows.
|
9 |
Bayesian Approach for Reliable GNSS-based Vehicle Localization in Urban Areas / Zuverlässige satellitengestützte Fahrzeuglokalisierung in städtischen GebietenObst, Marcus 20 March 2015 (has links) (PDF)
Nowadays, satellite-based localization is a well-established technical solution to support several navigation tasks in daily life. Besides the application inside of portable devices, satellite-based positioning is used for in-vehicle navigation systems as well. Moreover, due to its global coverage and the availability of inexpensive receiver hardware it is an appealing technology for numerous applications in the area of Intelligent Transportation Systems (ITSs). However, it has to be admitted that most of the aforementioned examples either rely on modest accuracy requirements or are not sensitive to temporary integrity violations. Although technical concepts of Advanced Driver Assistance Systems (ADASs) based on Global Navigation Satellite Systems (GNSSs) have been successfully demonstrated under open sky conditions, practice reveals that such systems suffer from degraded satellite signal quality when put into urban areas. Thus, the main research objective of this thesis is to provide a reliable vehicle positioning concept which can be used in urban areas without the aforementioned limitations. Therefore, an integrated probabilistic approach which preforms fault detection & exclusion, localization and multi-sensor data fusion within one unified Bayesian framework is proposed. From an algorithmic perspective, the presented concept is based on a probabilistic data association technique with explicit handling of outlier measurements as present in urban areas. By that approach, the accuracy, integrity and availability are improved at the same time, that is, a consistent positioning solution is provided. In addition, a comprehensive and in-depth analysis of typical errors in urban areas within the pseudorange domain is performed. Based on this analysis, probabilistic models are proposed and later on used to facilitate the positioning algorithm. Moreover, the presented concept clearly targets towards mass-market applications based on low-cost receivers and hence aims to replace costly sensors by smart algorithms. The benefits of these theoretical contributions are implemented and demonstrated on the example of a real-time vehicle positioning prototype as used inside of the European research project GAlileo Interactive driviNg (GAIN). This work describes all necessary parts of this system including GNSS signal processing, fault detection and multi-sensor data fusion within one processing chain. Finally, the performance and benefits of the proposed concept are examined and validated both with simulated and comprehensive real-world sensor data from numerous test drives.
|
10 |
Remaining useful life estimation of critical components based on Bayesian Approaches. / Prédiction de l'état de santé des composants critiques à l'aide de l'approche BayesienneMosallam, Ahmed 18 December 2014 (has links)
La construction de modèles de pronostic nécessite la compréhension du processus de dégradation des composants critiques surveillés afin d’estimer correctement leurs durées de fonctionnement avant défaillance. Un processus de d´dégradation peut être modélisé en utilisant des modèles de Connaissance issus des lois de la physique. Cependant, cette approche n´nécessite des compétences Pluridisciplinaires et des moyens expérimentaux importants pour la validation des modèles générés, ce qui n’est pas toujours facile à mettre en place en pratique. Une des alternatives consiste à apprendre le modèle de dégradation à partir de données issues de capteurs installés sur le système. On parle alors d’approche guidée par des données. Dans cette thèse, nous proposons une approche de pronostic guidée par des données. Elle vise à estimer à tout instant l’état de santé du composant physique et prédire sa durée de fonctionnement avant défaillance. Cette approche repose sur deux phases, une phase hors ligne et une phase en ligne. Dans la phase hors ligne, on cherche à sélectionner, parmi l’ensemble des signaux fournis par les capteurs, ceux qui contiennent le plus d’information sur la dégradation. Cela est réalisé en utilisant un algorithme de sélection non supervisé développé dans la thèse. Ensuite, les signaux sélectionnés sont utilisés pour construire différents indicateurs de santé représentant les différents historiques de données (un historique par composant). Dans la phase en ligne, l’approche développée permet d’estimer l’état de santé du composant test en faisant appel au filtre Bayésien discret. Elle permet également de calculer la durée de fonctionnement avant défaillance du composant en utilisant le classifieur k-plus proches voisins (k-NN) et le processus de Gauss pour la régression. La durée de fonctionnement avant défaillance est alors obtenue en comparant l’indicateur de santé courant aux indicateurs de santé appris hors ligne. L’approche développée à été vérifiée sur des données expérimentales issues de la plateforme PRO-NOSTIA sur les roulements ainsi que sur des données fournies par le Prognostic Center of Excellence de la NASA sur les batteries et les turboréacteurs. / Constructing prognostics models rely upon understanding the degradation process of the monitoredcritical components to correctly estimate the remaining useful life (RUL). Traditionally, a degradationprocess is represented in the form of physical or experts models. Such models require extensiveexperimentation and verification that are not always feasible in practice. Another approach that buildsup knowledge about the system degradation over time from component sensor data is known as datadriven. Data driven models require that sufficient historical data have been collected.In this work, a two phases data driven method for RUL prediction is presented. In the offline phase, theproposed method builds on finding variables that contain information about the degradation behaviorusing unsupervised variable selection method. Different health indicators (HI) are constructed fromthe selected variables, which represent the degradation as a function of time, and saved in the offlinedatabase as reference models. In the online phase, the method estimates the degradation state usingdiscrete Bayesian filter. The method finally finds the most similar offline health indicator, to the onlineone, using k-nearest neighbors (k-NN) classifier and Gaussian process regression (GPR) to use it asa RUL estimator. The method is verified using PRONOSTIA bearing as well as battery and turbofanengine degradation data acquired from NASA data repository. The results show the effectiveness ofthe method in predicting the RUL.
|
Page generated in 0.0627 seconds