• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 8
  • 6
  • 2
  • 1
  • 1
  • Tagged with
  • 24
  • 24
  • 6
  • 6
  • 6
  • 6
  • 5
  • 4
  • 4
  • 4
  • 3
  • 3
  • 3
  • 3
  • 3
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
21

Determining The Impacts Of Beach Restoration On Loggerhead (caretta Caretta) And Green Turtle (chelonia Mydas) Nesting Patterns And Reproductive Success Along Florida's Atlantic Coast

Hays, Allison Whitney 01 January 2012 (has links)
Artificial beach nourishment, the most common method to mitigate coastal erosion in the United States, is also considered the most ecologically friendly alternative for shoreline stabilization. However, this habitat alteration has the potential to impact nesting marine turtles and developing hatchlings. The first objective of this study was to determine how nourishing beaches with two different design templates affects loggerhead (Caretta caretta) and green turtle (Chelonia mydas) nesting success, the ratio of nests to the total number of nests and non-nesting emergences, and reproductive success, the ratio of hatched and emerged hatchlings to the total number of eggs deposited. Two types of restoration designs exist along the southern Brevard County, FL coastline, which supports some of the highest density loggerhead and green turtle nesting worldwide. Since 2005, approximately 35 kilometers of beach have undergone 1) fullscale restoration (typically called nourishment), where sand was added above and below the mean high tide line (2005, 2010) or 2) dune restoration, where sand was placed on the dune (2005, 2006, 2008, 2009). To quantify the effects of these restoration types, we used a Before-After-ControlImpact-Paired Series (BACIPS) model, which tests for significance between the difference in nesting success rates at the impact (engineered) and control sites (natural beach) before and after restoration ( ). For loggerheads, there was a significant difference in after dune restoration during the years of construction (2005, 2006, 2008, and 2009; p
22

Natural and Anthropogenic Influences on the Morphodynamics of Sandy and Mixed Sand and Gravel Beaches

Roberts, Tiffany 01 January 2012 (has links)
Beaches and coastal environments are dynamic, constantly shaped and reshaped by natural processes and anthropogenic modifications. The morphodynamics and influence of natural and anthropogenic factors of two different coasts at various temporal and spatial scales are discussed. To quantify the performance of several beach nourishment projects at annual temporal and kilometer spatial scales on three adjacent microtidal low-wave energy barrier islands in west-central Florida, a total of 5,200 beach and nearshore-profiles spaced at 300 m were surveyed monthly to bi-monthly from 2006-2010. Beach nourishment performance is most significantly influenced by the interruption of longshore sediment transport by complex tidal-inlet processes. More specifically, the tidal-inlet processes influencing adjacent beach nourishment performance includes longshore transport interruption resulting from divergence induced by wave refraction over an ebb-tidal shoal, flood-tidal currents along the beach, and total littoral blockage by structured inlets. A morphologic indicator of a large longshore transport gradient within the study area is the absence of a nearshore sandbar. These non-barred beaches are characterized by persistent shoreline erosion and were almost exclusively located in areas with a large longshore transport gradient. The more typical beach state along the three barrier islands was one exhibiting a migratory bar and relatively stable shoreline. The presence of a sandbar indicates the dominance of cross-shore processes, with onshore migration during calm wave conditions and offshore migration during energetic wave conditions. The onshore and offshore migration of the sandbar is closely related to non-stormy summer and stormy winter seasonal beach changes, respectively. The morphodynamics of a mixed sand and gravel beach in Delaware were investigated based on 740 beach profiles surveyed almost monthly from 2009 to 2011, 60 sediment cores, and 550 surface sediment samples collected at various alongshore and cross-shore transects. Inter-seasonal temporal scales of storm-induced beach changes and post-storm recovery were examined based on a hurricane, a typical energetic winter storm, and an extremely energetic storm resulting from the rare collision of a hurricane and winter storm ("Nor'Ida") occurring within a 3-month period in 2009. The mixed sand and gravel beaches in Delaware are characterized by monotonically increasing water depths lacking a sandbar under all wave conditions. A distinctive beach cycle was identified consisting of a built-up berm profile and depleted nearly-planar storm profile, with a time-scale related to the frequency and intensity of storm impact and duration of intra-storm recovery instead of simple seasonality. The sedimentological characteristics of the storm deposit associated with Nor'Ida demonstrated substantial cross-shore variation ranging from sandy-gravel and gravelly-sand within the storm swash zone (near the pre-storm dune edge) to well-sorted medium to coarse sand seaward of the storm swash zone, suggesting that storm deposits along mixed beaches demonstrate a variety of sedimentological characteristics. A new dynamic beach cycle model is proposed for the non-barred mixed sand and gravel beach with temporal variability controlled by storm occurrence and inter-storm duration.
23

Beach Nourishment: Effects on the Hatching & Emergence Success Rates of Leatherback (Dermochelys coriacea), Loggerhead (Caretta caretta), and Green (Chelonia mydas) Sea Turtles

Caderas, Jenna 01 July 2016 (has links)
Broward County, Florida is a popular tourism destination. Due to its popularity, much of the shoreline has been modified and natural habitats were replaced with infrastructure such as houses, condominiums, resorts, and restaurants. The same Broward County beaches utilized by tourists and residents are important for three species of nesting sea turtles, including the Leatherback, Dermochelys coriacea, Loggerhead, Caretta caretta, and Green, Chelonia mydas, Turtles. The Broward County Sea Turtle Conservation Program (BCSTCP) collects yearly data in order to study these endangered reptiles. Increased anthropogenic effects including further coastal development (public & private), public beach events, public beach access, as well as natural events, have caused these important nesting beaches to erode and narrow. In an effort to control this erosion damage, Broward County has performed a number of beach nourishment projects. This study found yearly fluctuations in sea turtle hatching and emergence success rates, and years of beach nourishment projects significantly decreased these rates. Yearly hatching data available from Broward County concludes that beach nourishment, as well as hurricanes and tropical storms cause decreases in sea turtle hatching and emergence success rates in Broward County. Additionally, nest depth and sea turtle size increases the hatching and emergence success rates from females that are not too large or too small that nest in Broward County.
24

Modélisation d'érosion côtière : application à la partie Ouest du tombolo de Giens / Coastal erosion modeling : The case of the western tombolo of Giens

Than, Van Van 18 September 2015 (has links)
L’objectif de cette thèse est la détermination des causes du phénomène d'érosion marine, et la production de propositions d'orientation pour la protection de la plage de l’Almanarre. L'étude commence par la collecte et l'analyse de toutes les données disponibles, pour trouver des règles d’évolution du tombolo de Giens. Puis, le logiciel de modélisation MIKE a été appliqué pour confirmer l'hypothèse et à obtenir une meilleure connaissance de la dynamique à l’œuvre au tombolo Ouest. Ensuite, nous avons couplé des facteurs simultanément : les houles, les courants côtiers, et les transports des sédiments pour les différents régimes de houle et de vent dans MIKE 21. Enfin, la possibilité de stabiliser le tombolo Ouest est discutée pour donner des suggestions sur les choix de solutions adaptées. / The objective of this thesis is the determination of the causes of sea erosion phenomenon, and the production of policy proposals for the protection of the beach. The study begins with the collection and analysis of all available data, to find evolution rules of tombolo of Giens. Which aims to explain how the hydrodynamic processes and sediment transport occur. Then MIKE modeling software was applied to confirm the hypothesis and get a better understanding of the dynamics at work in the Western tombolo. Then, we coupled factors simultaneously: waves, coastal currents and sediment transport for different regimes of wave and wind in MIKE 21. Finally, the possibility of stabilizing the Western tombolo is discussed to give suggestions on the choice of solutions.

Page generated in 0.0962 seconds