• Refine Query
  • Source
  • Publication year
  • to
  • Language
  • 2
  • Tagged with
  • 2
  • 2
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • 1
  • About
  • The Global ETD Search service is a free service for researchers to find electronic theses and dissertations. This service is provided by the Networked Digital Library of Theses and Dissertations.
    Our metadata is collected from universities around the world. If you manage a university/consortium/country archive and want to be added, details can be found on the NDLTD website.
1

Deformation Behavior of adidas BOOST(TM) Foams Using In Situ X-ray Tomography and Correlative Microscopy

January 2020 (has links)
abstract: Energy return in footwear is associated with the damping behavior of midsole foams, which stems from the combination of cellular structure and polymeric material behavior. Recently, traditional ethyl vinyl acetate (EVA) foams have been replaced by BOOST(TM) foams, thereby reducing the energetic cost of running. These are bead foams made from expanded thermoplastic polyurethane (eTPU), which have a multi-scale structure consisting of fused porous beads, at the meso-scale, and thousands of small closed cells within the beads at the micro-scale. Existing predictive models coarsely describe the macroscopic behavior but do not take into account strain localizations and microstructural heterogeneities. Thus, enhancement in material performance and optimization requires a comprehensive understanding of the foam’s cellular structure at all length scales and its influence on mechanical response. This dissertation focused on characterization and deformation behavior of eTPU bead foams with a unique graded cell structure at the micro and meso-scale. The evolution of the foam structure during compression was studied using a combination of in situ lab scale and synchrotron x-ray tomography using a four-dimensional (4D, deformation + time) approach. A digital volume correlation (DVC) method was developed to elucidate the role of cell structure on local deformation mechanisms. The overall mechanical response was also studied ex situ to probe the effect of cell size distribution on the force-deflection behavior. The radial variation in porosity and ligament thickness profoundly influenced the global mechanical behavior. The correlation of changes in void size and shape helped in identifying potentially weak regions in the microstructure. Strain maps showed the initiation of failure in cell structure and it was found to be influenced by the heterogeneities around the immediate neighbors in a cluster of voids. Poisson’s ratio evaluated from DVC was related to the microstructure of the bead foams. The 4D approach taken here provided an in depth and mechanistic understanding of the material behavior, both at the bead and plate levels, that will be invaluable in designing the next generation of high-performance footwear. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
2

An Exploration of Rapid Tooling in Low-Cost Bead Foam Molding Applications

Dejager, Matthew Emerson 07 February 2024 (has links)
Many manufacturing processes require complex tooling which contributes significantly to the cost and time required to develop new products. Bead foam molding is often hampered by these limitations. This thesis presents an analysis of Additive Manufacturing (AM) applications in low cost bead foam molding, focusing on molding trials, economic analysis, and future potential. Through molding trials, the thesis evaluates the efficacy of AM tooling in comparison to traditional aluminum tooling, specifically in evaluating tool life and cost. A key finding is a reduction in lead time up to 70% and cost of up to 63% compared to traditional tooling, particularly in low-volume production scenarios. This thesis includes a detailed cost analysis, which breaks down the cost components associated with AM processes such as pre-processing, production, material costs, post-processing, and overheads. This analysis reveals that AM tooling can offer substantial cost savings over conventional methods, making it a viable option for specific manufacturing contexts. Findings suggest that while AM tooling shows significant promise in reducing costs and accelerating production in bead foam molding, further research is required. This research should focus on exploring the scalability of AM for larger tools and investigating the application of new and emerging AM processes and materials. / Master of Science / This thesis explores the use of Additive Manufacturing (AM), often known as 3D printing, in creating molds for bead foam molding—a process used in manufacturing a variety of foam products. Findings reveal that using AM for toolmaking can be faster and more cost-effective than traditional methods, especially for small-scale production. The thesis details experiments comparing AM with conventional tooling and presents a cost analysis showing the potential time and cost savings. While promising, further research is needed to fully harness the benefits of AM in this field. This study opens doors to more efficient and economical manufacturing techniques using emerging AM technology.

Page generated in 0.0421 seconds