Spelling suggestions: "subject:"In situ compression"" "subject:"In situ 8compression""
1 |
Wavelet Compression for Visualization and Analysis on High Performance ComputersLi, Shaomeng 31 October 2018 (has links)
As HPC systems move towards exascale, the discrepancy between computational power and I/O transfer rate is only growing larger. Lossy in situ compression is a promising solution to address this gap, since it alleviates I/O constraints while still enabling traditional post hoc analysis. This dissertation explores the viability of such a solution with respect to a specific kind of compressor — wavelets. We especially examine three aspects of concern regarding the viability of wavelets: 1) information loss after compression, 2) its capability to fit within in situ constraints, and 3) the compressor’s capability to adapt to HPC architectural changes. Findings from this dissertation inform in situ use of wavelet compressors on HPC systems, demonstrate its viabilities, and argue that its viability will only increase as exascale computing becomes a reality.
|
2 |
Deformation Behavior of adidas BOOST(TM) Foams Using In Situ X-ray Tomography and Correlative MicroscopyJanuary 2020 (has links)
abstract: Energy return in footwear is associated with the damping behavior of midsole foams, which stems from the combination of cellular structure and polymeric material behavior. Recently, traditional ethyl vinyl acetate (EVA) foams have been replaced by BOOST(TM) foams, thereby reducing the energetic cost of running. These are bead foams made from expanded thermoplastic polyurethane (eTPU), which have a multi-scale structure consisting of fused porous beads, at the meso-scale, and thousands of small closed cells within the beads at the micro-scale. Existing predictive models coarsely describe the macroscopic behavior but do not take into account strain localizations and microstructural heterogeneities. Thus, enhancement in material performance and optimization requires a comprehensive understanding of the foam’s cellular structure at all length scales and its influence on mechanical response.
This dissertation focused on characterization and deformation behavior of eTPU bead foams with a unique graded cell structure at the micro and meso-scale. The evolution of the foam structure during compression was studied using a combination of in situ lab scale and synchrotron x-ray tomography using a four-dimensional (4D, deformation + time) approach. A digital volume correlation (DVC) method was developed to elucidate the role of cell structure on local deformation mechanisms. The overall mechanical response was also studied ex situ to probe the effect of cell size distribution on the force-deflection behavior. The radial variation in porosity and ligament thickness profoundly influenced the global mechanical behavior. The correlation of changes in void size and shape helped in identifying potentially weak regions in the microstructure. Strain maps showed the initiation of failure in cell structure and it was found to be influenced by the heterogeneities around the immediate neighbors in a cluster of voids. Poisson’s ratio evaluated from DVC was related to the microstructure of the bead foams. The 4D approach taken here provided an in depth and mechanistic understanding of the material behavior, both at the bead and plate levels, that will be invaluable in designing the next generation of high-performance footwear. / Dissertation/Thesis / Doctoral Dissertation Materials Science and Engineering 2020
|
3 |
Microstructural computational modeling of the mechanical behaviour of closed-cell foams: from tessellation-based to CT scan-based modelingGhazi, Arash 03 June 2020 (has links) (PDF)
The mechanical behavior of closed cell metallic foams strongly depends on their geometry at the scale of cells and cell walls. Two approaches are proposed in this work to address this computationally:(i) a controlled geometrical description of foam morphology features by exploiting an advanced tessellation-based procedure, allowing to generate realistic microstructural geometry,(ii) a procedure allowing to extract geometrical features of a foam morphology based on image-based modelling using CT scans. The first approach proposes a methodology that allows the automated generation of RVEs with a detailed control of the microstructure, including of cell geometries. It is primarily based on an inclusions packing algorithm assisted by distance fields control. Such distance fields can subsequently be used to morph inclusions, producing generalized tessellations with the possibility of incorporating curved and irregular boundaries. 3D morphologies of closed cell foams are produced by extracting the geometry from a proper combination of distance field functions. The procedure allows controlling the cell size distribution, spatial cell wall thickness distribution (correlated or not with the cell size distribution), wall curvatures and/or defects. An automated 3D meshing tool for implicit geometries was exploited to produce high quality tetrahedral meshes from the generated implicit foam geometries. Representative volume element based simulations were performed using this approach to assess the different morphological features relative importance on the mechanical behaviour of ALPORAS. An original extension of this tool was incorporating the transformation of 3D geometry into a shell-based finite element model. This resulted in a significant gain in computation time and allowed for simulating compression test up to densification (being out of reach with 3D solid finite element models) showing a good qualitative match with experimental results from the literature.The second approach proposes a robust methodology for the automated generation of shell-based finite element models directly from X-ray Computed Tomography (CT) scans.An in situ X-ray CT compression test of the sample was performed to serve as basis of comparison to the computations. As first steps, raw CT images are segmented using various image processing techniques and an implicit 3D geometry is reconstructed for each cell by using a Euclidean distance field computation technique. An automated geometrical procedure is used next to extract a (surface) shell geometry from this implicit 3D geometry, followed by subsequent meshing step. A direct comparison of the performed simulations with raw experimental data is performed. The detailed deformation and failure mechanisms of closed-cell foams under quasi static uniaxial compressive loading are investigated numerically and compared directly with the result of the in situ experimental measurement. / Doctorat en Sciences de l'ingénieur et technologie / info:eu-repo/semantics/nonPublished
|
4 |
Temporal Lossy In-Situ Compression for Computational Fluid Dynamics SimulationsLehmann, Henry 31 August 2018 (has links)
Während CFD Simulationen für Metallschmelze im Rahmen des SFB920 fallen auf dem Taurus HPC Cluster in Dresden sehr große Datenmengen an, deren Handhabung den wissenschaftlichen Arbeitsablauf stark verlangsamen. Zum einen ist der Transfer in Visualisierungssysteme nur unter hohem Zeitaufwand möglich. Zum anderen ist interaktive Analyse von zeitlich abhängigen Prozessen auf Grund des Speicherflaschenhalses nahezu unmöglich. Aus diesen Gründen beschäftigt sich die vorliegende Dissertation mit der Entwicklung sog. Temporaler In-Situ Kompression für wissenschaftliche Daten direkt innerhalb von CFD Simulationen. Dabei werden mittels neuer Quantisierungsverfahren die Daten auf ~10% komprimiert, wobei dekomprimierte Daten einen Fehler von maximal 1% aufweisen. Im Gegensatz zu nicht-temporaler Kompression, wird bei temporaler Kompression der Unterschied zwischen Zeitschritten komprimiert, um den Kompressionsgrad zu erhöhen. Da die Datenmenge um ein Vielfaches kleiner ist, werden Kosten für die Speicherung und die Übertragung gesenkt. Da Kompression, Transfer und Dekompression bis zu 4 mal schneller ablaufen als der Transfer von unkomprimierten Daten, wird der wissenschaftliche Arbeitsablauf beschleunigt.
|
5 |
Microtomographie X de matériaux à comportement pseudo-fragile : Identification du réseau de fissures / X-ray microtomography of materials to brittle-like behavior : Identification of the crack networkHauss, Grégory 06 December 2012 (has links)
L'étude de l'endommagement des matériaux à comportement pseudo-fragile fait l'objet denombreuses études et la caractérisation du réseau de fissures constitue une étape nécessairepour une meilleure compréhension de leur comportement. L'objectif principal est ici d'identifierde manière la plus fine possible cet espace fissuré en trois dimensions grâce à la techniqued'imagerie nommée microtomographie X. Pour ce faire, une machine d'essai in-situ a étédéveloppée et une procédure d'analyse des images 3D a été validée. L'objectif du dispositif insituest de maintenir l'échantillon dans différents états fissurés pour rendre possible lesacquisitions microtomographiques. Une fois les images 3D reconstruites, la procédure detraitement est appliquée et l'espace fissuré est identifié. Des mesures sont alors réalisées surl'évolution du réseau de fissures au cours de l'endommagement. Ce travail constitue la premièreétape d'un traitement plus général qui a pour objectif de simuler numériquement lecomportement mécanique de ces matériaux en se basant sur leur géométrie réelle. / Materials displaying a pseudo-brittle behavior have been well studied over the past decade andthe characterization of the cracks network has become nowadays an important step for theunderstanding of their damaging behavior. The aim of this work is to characterize, in the finestavailable way, this crack space in 3D using X-ray computed microtomography. This wasachieved: 1) by designing an in-situ compressive device which maintains a sample in a crackedstate during microtomographic data acquisition and, 2) by processing the images with relevantimage filtering techniques for a better cracks network characterization. Two parameters ofchoice are then measured: the cracks network surface and volume. This work is the first step ofa global procedure which aims to numerically model the mechanical behavior of pseudo-brittlematerials by using real 3D crack geometry.
|
6 |
Étude de la plasticité du monocristal de phase MAX par déformation aux petites échelles / Study of the single crystal plasticity of MAX phase by deformation at small scalesSylvain, Wilgens 06 December 2016 (has links)
L'objectif de cette thèse est l'étude de la déformation, à l'échelle microscopique, de la phase MAX Ti2AlN, synthétisée par métallurgie des poudres. Ce travail se divise en trois parties : une première dans laquelle l'accent a été mis sur l'hystérèse mécanique des phases MAX via des essais cyclés, en nanoindentation sphérique et compression ex-situ de micro-piliers, sur des grains d'orientations différentes déterminées par l'EBSD. Dans la deuxième nous nous sommes intéressés à la déformation de micropiliers via des essais de compression cyclés in-situ couplés à la micro-diffraction Laue. L'objectif a été d'analyser les taches diffraction au cours de la déformation du pilier afin de mettre en évidence les mécanismes de déformation élémentaires mis en jeu et d'observer les structures finales via des images MEB post-mortem des piliers. Enfin, une dernière dans laquelle l'objectif a été l'étude des mécanismes de déformation en température à l'échelle microscopique via des essais de nano-indentation allant jusqu'à 800°C. La caractérisation des lignes de glissement en surface et des configurations microstructurales sous l'empreinte a été réalisée par AFM et MET respectivement. Toutes les données recueillies par ces divers essais aux petites échelles, ont permis d'affiner notre compréhension des mécanismes de déformation du monocristal de phase MAX, notamment vis à vis des modèles usuellement proposés dans la littérature. / The thesis's goal is to study the deformation, at microscopic scale, of the MAX phase Ti2AlN synthesized by powder metallurgy. This work is divided into three parts: in the first part, the interest has been put on the hysteretic behavior of the MAX phases via cyclic mechanical solicitations, during spherical indentation tests and ex-situ compression of micro-pillars, on differently orientated grains beforehand determined by EBSD. In the second part, we were interested into the micro-pillar's deformation via insitu cyclic compression tests coupled with Laue micro-diffraction. The goal was to analyse the evolution diffraction lines during the pillar's deformation in order to highlight the elementary deformation mechanisms and to observe the finale structures via the post-mortem SEM imaging of the pillars. Finally, a last part was devoted to study the deformation mechanisms in temperature at microscopic scale via nano-indentation tests up to 800°C. The characterization of the slip lines on the surface has been revealed by AFM and that of t he microstructural configurations (dislocations) under the indent has been done by TEM. All data collected by these various tests at the small scales have refined our understanding of the deformation mechanisms of crystal MAX phase, particularly with respect to the models usually proposed in the literature.
|
Page generated in 0.0826 seconds